
	

https://xomuke.bebopim.com/37070550647814039664002511326035056628801?kasosizuxigunupinemikikapepodezeziregomixafekisibufokuzolizivoruwevusesevoramafojivajimoletagiseg=xafozovikaxapapogufepapupafugedesevozemunafuxemalitizabizugajixikuligekodemedalibazaxobomisorenegerukififidiloperuzunuvalosavunimunazewejabekunonuxokosemididoruluwepesexinetunipotidekixogowutudokumoxox&utm_term=why+subqueries+are+used+in+sql&dumajezutavasozewajisoposavadakumokope=mususupuvatixodivuzifuvudulunapizukeranuriwofosafefaviredulezejerosetadisuvalodekelomefawunimewiwotumajofisefelalebuwedoperabenefefisalepuguvu




A	subquery	in	SQL	is	a	smaller	query	that	is	nested	inside	a	larger	query.	It	can	be	used	in	various	parts	of	a	SQL	statement,	such	as	the	SELECT,	FROM,	WHERE,	or	HAVING	clause.	The	subquery	is	executed	first,	and	its	results	are	then	passed	to	the	outer	query.	This	allows	you	to	perform	complex	queries	that	involve	comparing	values,
determining	if	an	expression	is	included	in	the	results,	or	checking	if	there	are	any	rows	selected.	Subqueries	can	be	used	in	various	SQL	statements,	including	SELECT,	INSERT,	UPDATE,	and	DELETE.	They	can	be	used	to	compare	expressions,	determine	if	an	expression	is	included	in	the	results,	or	check	if	there	are	any	rows	selected.	The	syntax
for	a	subquery	is	simple:	the	inner	query	(subquery)	is	executed	first,	and	then	its	results	are	passed	to	the	outer	query.	Here's	an	example	of	how	you	might	use	a	subquery	in	a	SELECT	statement:	```sql	SELECT	first_name,	(SELECT	department_name	FROM	departments	WHERE	departments.department_id	=	employees.department_id)	AS
department_name	FROM	employees;	```	This	query	selects	the	first	name	and	department	name	for	each	employee.	The	subquery	retrieves	the	department	name	from	the	departments	table	based	on	the	department	ID	of	each	employee.	The	main	locations	where	you	can	use	a	subquery	are:	*	In	the	SELECT	clause,	to	return	a	single	value	or	a	set	of
values	*	In	the	FROM	clause,	to	join	tables	based	on	common	columns	*	In	the	WHERE	clause,	to	filter	rows	based	on	conditions	specified	by	the	subquery	*	In	the	HAVING	clause,	to	group	and	aggregate	data	based	on	conditions	specified	by	the	subquery	SELECT	*	FROM	(SELECT	first_name,	salary	FROM	employees	WHERE	salary	>	5000)	AS
"high_salaried";	SELECT	first_name	FROM	employees	WHERE	department_id	IN	(SELECT	department_id	FROM	departments	WHERE	location_id>1500);	SELECT	department_id,	AVG(salary)	FROM	employees	GROUP	BY	department_id	HAVING	AVG(salary)	>	(SELECT	AVG(salary)	FROM	employees);	Given	article	text	here	This	SQL	query	links	two
tables	based	on	student	ID,	filters	results	where	total	marks	are	greater	than	80	for	each	student,	and	retrieves	data	about	students	with	higher	scores	than	another	student.	The	subquery	helps	in	dynamic	filtering	by	comparing	the	total	marks	of	other	students	with	a	specific	value	from	the	'marks'	table.	Given	article	text	here	SELECT	*	FROM
employees	WHERE	department_id	IN	(SELECT	department_id	FROM	departments);	To	extract	specific	orders	from	a	database	table,	SQL	queries	can	be	used	to	filter	and	copy	data	into	a	new	table.	For	instance,	in	the	given	example,	a	query	is	provided	that	inserts	data	from	the	'orders'	table	into	the	'neworder'	table	based	on	the	advance	amount.
The	SQL	code	snippet	for	inserting	data	into	the	'neworder'	table	selects	all	columns	where	the	advance_amount	is	either	2000	or	5000.	This	means	only	rows	with	these	specific	advance	amounts	will	be	copied	into	the	new	table.	Additionally,	an	example	of	using	subqueries	with	the	UPDATE	statement	is	provided	to	update	a	column	in	the	'neworder'
table	based	on	conditions	specified	by	another	query.	In	this	case,	it	updates	the	ord_date	to	'15-JAN-10'	for	rows	where	the	difference	between	ord_amount	and	advance_amount	is	less	than	the	minimum	value	of	ord_amount	in	the	'orders'	table.	Given	article	text	here	DELETE	FROM	neworder	WHERE	advance_amount	<	(SELECT
MAX(advance_amount)	FROM	orders);	The	provided	text	explains	the	concept	of	subqueries	in	SQL,	their	types,	and	how	they	can	be	used	in	various	SQL	statements.	It	highlights	the	difference	between	inner	and	outer	queries,	the	general	rules	for	using	subqueries,	and	their	common	applications.	A	subquery	is	a	query	nested	inside	another	query,
which	executes	first	and	provides	its	result	to	the	outer	query.	Subqueries	are	used	to	compare	expressions,	determine	if	an	expression	is	included	in	the	results	of	another	query,	or	check	whether	the	query	selects	any	rows.	Subqueries	can	be	used	with	various	SQL	statements	such	as	SELECT,	INSERT,	UPDATE,	and	DELETE	statements.	They	must
be	enclosed	in	parentheses	and	placed	on	the	right	side	of	the	comparison	operator.	Subqueries	cannot	include	an	ORDER	BY	clause,	but	it	can	be	used	in	the	main	(outer)	query.	The	text	also	explains	the	different	types	of	subqueries,	including	scalar,	column,	multiple	column,	single	row,	multiple	row,	table,	correlated,	and	nested	subqueries.
Additionally,	it	mentions	that	subqueries	can	be	used	with	INSERT,	UPDATE,	and	DELETE	statements	to	insert	or	update	data	based	on	the	results	of	another	query.	Note:	Outputs	shown	here	are	taken	using	Oracle	Database	10g	Express	Edition.	To	further	develop	your	skills	in	using	SQL	subqueries	to	craft	flexible	queries	for	data	retrieval	from
databases.	This	tutorial	will	cover	how	to	utilize	SQL	subqueries	within	other	queries	to	retrieve	data	efficiently.	A	subquery	is	an	SQL	query	nested	inside	another	query,	with	the	outer	query	being	referred	to	as	a	main	query.	To	write	a	subquery,	it's	essential	to	have	a	thorough	understanding	of	the	SELECT	statement	syntax:	`SELECT	select_list
FROM	table1	INNER	JOIN	table2	ON	join_condition	WHERE	filter_condition;`.	The	JOIN	clause	can	be	either	an	INNER	JOIN,	LEFT	JOIN,	RIGHT	JOIN,	or	FULL	JOIN.	In	this	syntax:	*	The	SELECT	clause	can	accept	a	single	value,	which	can	be	a	column	or	expression.	*	The	FROM	and	INNER	JOIN	clauses	can	accept	a	result	set	like	a	table.	*	The
WHERE	clause	can	accept	a	single	value,	which	can	be	a	column	or	expression.	Based	on	the	shape	of	the	data	each	clause	accepts,	you	can	embed	an	appropriate	subquery.	A	subquery	in	the	SELECT	clause	returns	a	single	value,	while	a	subquery	in	the	FROM	or	INNER	JOIN	clauses	returns	a	result	set.	A	subquery	in	the	WHERE	clause	also
returns	a	single	value.	Job	IDs	related	to	sales	roles	are	extracted:	job_id	15,	16.	Next,	employees	with	these	job	IDs	are	selected.	A	subquery	retrieves	first	names,	salaries,	and	average	salaries	for	all	employees:	SELECT	first_name,	salary,	(SELECT	ROUND(AVG(salary),	2)	average_salary	FROM	employees)	FROM	employees	ORDER	BY	salary;	The
result	is	presented	in	a	table	showing	employee	information	along	with	the	overall	average	salary.	To	illustrate	using	a	subquery	in	the	FROM	clause,	consider	calculating	the	average	departmental	salary	by	combining	employee	salaries	within	each	department:	SELECT	ROUND(AVG(department_salary),	0)	average_department_salary	FROM	(SELECT
department_id,	SUM(salary)	department_salary	FROM	employees	GROUP	BY	department_id);	This	query	generates	a	result	set	showing	department	IDs	and	total	salaries.	The	outer	query	then	calculates	the	overall	average	departmental	salary,	rounded	to	zero	decimal	places.	A	subquery	can	also	be	used	in	the	INNER	JOIN	clause	to	identify
employees	earning	above	the	company's	average	salary:	SELECT	first_name,	last_name,	salary,	s.avg_salary	FROM	employees	e	INNER	JOIN	(SELECT	ROUND(AVG(salary),	0)	AS	avg_salary	FROM	employees)	s	ON	e.salary	>	s.avg_salary	ORDER	BY	salary;	This	query	retrieves	employee	information	and	compares	it	to	the	average	salary.

Why	are	joins	better	than	subqueries.	Why	subqueries	are	bad.	Why	subqueries.	What	are	subqueries	and	why	are	they	used.


