
	

https://jawuvigadupokuv.maxudijuz.com/722379343522737461158036461266722857448711?zidavodidovososiginopilawoxinodogotorizekoximedixukugovigeguvupolukunupejilawemi=gunikuveretubiwoxipugemoxezawofusibobuborowozijarinilupibavosufepezegozedofofatolexejofabedowikisejutoluborebekunenijunororanaxogoduwomavamusuxojugemeronunowapoluzulewonijakelamawopawetirejizoninafuregipemuv&utm_kwd=all+topics+of+data+structure&wiwulebiworerezajalarobunisevosanajobobujazekefukenufoguzikojinefegorolavikotefesu=tevedadowonofafizagudoxivopimowetuzimajijupazodawiwutetomutupirijagavawimubepibipamogodupatagalolerebitovanukegazafuta


























This	is	a	list	of	well-known	data	structures.	For	a	wider	list	of	terms,	see	list	of	terms	relating	to	algorithms	and	data	structures.	For	a	comparison	of	running	times	for	a	subset	of	this	list	see	comparison	of	data	structures.	Main	article:	Primitive	type	Boolean,	true	or	false.	Character	Floating-point	representation	of	a	finite	subset	of	the	rationals.
Including	single-precision	and	double-precision	IEEE	754	floats,	among	others	Fixed-point	representation	of	the	rationals	Integer,	a	direct	representation	of	either	the	integers	or	the	non-negative	integers	Reference,	sometimes	erroneously	referred	to	as	a	pointer	or	handle,	is	a	value	that	refers	to	another	value,	possibly	including	itself	Symbol,	a
unique	identifier	Enumerated	type,	a	set	of	symbols	Complex,	representation	of	complex	numbers	Main	article:	Composite	type	Array,	a	sequence	of	elements	of	the	same	type	stored	contiguously	in	memory	Record	(also	called	a	structure	or	struct),	a	collection	of	fields	Product	type	(also	called	a	tuple),	a	record	in	which	the	fields	are	not	named
String,	a	sequence	of	characters	representing	text	Union,	a	datum	which	may	be	one	of	a	set	of	types	Tagged	union	(also	called	a	variant,	discriminated	union	or	sum	type),	a	union	with	a	tag	specifying	which	type	the	data	is	Main	article:	Abstract	data	type	Container	List	Tuple	Associative	array,	Map	Multimap	Set	Multiset	(bag)	Stack	Queue
(example	Priority	queue)	Double-ended	queue	Graph	(example	Tree,	Heap)	Some	properties	of	abstract	data	types:	Structure	Ordered?	Uniqueness?	List	yes	no	Associative	array	no	keys	(indexes)	only	Set	no	yes	Stack	yes	no	Multimap	no	no	Multiset	(bag)	no	no	Queue	yes	no	"Ordered"	means	that	the	elements	of	the	data	type	have	some	kind	of
explicit	order	to	them,	where	an	element	can	be	considered	"before"	or	"after"	another	element.	This	order	is	usually	determined	by	the	order	in	which	the	elements	are	added	to	the	structure,	but	the	elements	can	be	rearranged	in	some	contexts,	such	as	sorting	a	list.	For	a	structure	that	isn't	ordered,	on	the	other	hand,	no	assumptions	can	be	made
about	the	ordering	of	the	elements	(although	a	physical	implementation	of	these	data	types	will	often	apply	some	kind	of	arbitrary	ordering).	"Uniqueness"	means	that	duplicate	elements	are	not	allowed.	Depending	on	the	implementation	of	the	data	type,	attempting	to	add	a	duplicate	element	may	either	be	ignored,	overwrite	the	existing	element,	or
raise	an	error.	The	detection	for	duplicates	is	based	on	some	inbuilt	(or	alternatively,	user-defined)	rule	for	comparing	elements.	A	data	structure	is	said	to	be	linear	if	its	elements	form	a	sequence.	Array	Associative	array	Bit	array	Bit	field	Bitboard	Bitmap	Circular	buffer	Control	table	Image	Dope	vector	Dynamic	array	Gap	buffer	Hashed	array	tree
Lookup	table	Matrix	Parallel	array	Sorted	array	Sparse	matrix	Iliffe	vector	Variable-length	array	Doubly	linked	list	Array	list	Linked	list	also	known	as	a	Singly	linked	list	Association	list	Self-organizing	list	Skip	list	Unrolled	linked	list	VList	Conc-tree	list	Xor	linked	list	Zipper	Doubly	connected	edge	list	also	known	as	half-edge	Difference	list	Free	list
Main	article:	Tree	(data	structure)	Trees	are	a	subset	of	directed	acyclic	graphs.	AA	tree	AVL	tree	Binary	search	tree	Binary	tree	Cartesian	tree	Conc-tree	list	Left-child	right-sibling	binary	tree	Order	statistic	tree	Pagoda	Randomized	binary	search	tree	Red–black	tree	Rope	Scapegoat	tree	Self-balancing	binary	search	tree	Splay	tree	T-tree	Tango	tree
Threaded	binary	tree	Top	tree	Treap	WAVL	tree	Weight-balanced	tree	Zip	tree	B-tree	B+	tree	B*-tree	Dancing	tree	2–3	tree	2–3–4	tree	Queap	Fusion	tree	Bx-tree	Heap	Min-max	heap	Binary	heap	B-heap	Weak	heap	Binomial	heap	Fibonacci	heap	AF-heap	Leonardo	heap	2–3	heap	Soft	heap	Pairing	heap	Leftist	heap	Treap	Beap	Skew	heap	Ternary
heap	D-ary	heap	Brodal	queue	In	these	data	structures	each	tree	node	compares	a	bit	slice	of	key	values.	Radix	tree	Suffix	tree	Suffix	array	Compressed	suffix	array	FM-index	Generalised	suffix	tree	B-tree	Judy	array	Trie	X-fast	trie	Y-fast	trie	Merkle	tree	Ternary	search	tree	Ternary	tree	K-ary	tree	And–or	tree	(a,b)-tree	Link/cut	tree	SPQR-tree
Spaghetti	stack	Disjoint-set	data	structure	(Union-find	data	structure)	Fusion	tree	Enfilade	Exponential	tree	Fenwick	tree	Van	Emde	Boas	tree	Rose	tree	These	are	data	structures	used	for	space	partitioning	or	binary	space	partitioning.	Segment	tree	Interval	tree	Range	tree	Bin	K-d	tree	Implicit	k-d	tree	Min/max	k-d	tree	Relaxed	k-d	tree	Adaptive	k-d
tree	Quadtree	Octree	Linear	octree	Z-order	UB-tree	R-tree	R+	tree	R*	tree	Hilbert	R-tree	X-tree	Metric	tree	Cover	tree	M-tree	VP-tree	BK-tree	Bounding	interval	hierarchy	Bounding	volume	hierarchy	BSP	tree	Rapidly	exploring	random	tree	Abstract	syntax	tree	Parse	tree	Decision	tree	Alternating	decision	tree	Minimax	tree	Expectiminimax	tree
Finger	tree	Expression	tree	Log-structured	merge-tree	PQ	tree	Approximate	Membership	Query	Filter	Bloom	filter	Cuckoo	filter	Quotient	filter	Count–min	sketch	Distributed	hash	table	Double	hashing	Dynamic	perfect	hash	table	Hash	array	mapped	trie	Hash	list	Hash	table	Hash	tree	Hash	trie	Koorde	Prefix	hash	tree	Rolling	hash	MinHash	Ctrie
Many	graph-based	data	structures	are	used	in	computer	science	and	related	fields:	Graph	Adjacency	list	Adjacency	matrix	Graph-structured	stack	Scene	graph	Decision	tree	Binary	decision	diagram	Zero-suppressed	decision	diagram	And-inverter	graph	Directed	graph	Directed	acyclic	graph	Propositional	directed	acyclic	graph	Multigraph
Hypergraph	Lightmap	Winged	edge	Quad-edge	Routing	table	Symbol	table	Piece	table	E-graph	List	of	algorithms	Purely	functional	data	structure	Blockchain,	a	hash-based	chained	data	structure	that	can	persist	state	history	over	time	Tommy	Benchmarks	Comparison	of	several	data	structures.	Retrieved	from	"	roadmap.sh	by	Community	created
roadmaps,	best	practices,	projects,	articles,	resources	and	journeys	to	help	you	choose	your	path	and	grow	in	your	career.	The	top	DevOps	resource	for	Kubernetes,	cloud-native	computing,	and	large-scale	development	and	deployment.	Data	Structures	&	Algorithms	What	Is	Data	Structure?	Definition,	Types,	Applications	&	More	What	Is	Data
Structure?Key	Features	Of	Data	StructuresBasic	Terminologies	Related	To	Data	StructuresTypes	Of	Data	StructuresWhat	Are	Linear	Data	Structures	&	Its	Types?What	Are	Non-Linear	Data	Structures	&	Its	Types?Importance	Of	Data	Structure	In	ProgrammingBasic	Operations	On	Data	StructuresApplications	Of	Data	StructuresReal-Life	Applications
Of	Data	StructuresLinear	Vs.	Non-linear	Data	StructuresWhat	Are	Algorithms?	The	Difference	Between	Data	Structures	&	AlgorithmsConclusionFrequently	Asked	Questions	Learn	About	Asymptotic	Notations	(+	Graphs	&	Real-Life	Examples)	What	Is	Asymptotic	Notation?How	Asymptotic	Notation	Helps	In	Analyzing	PerformanceTypes	Of	Asymptotic
NotationBig-O	Notation	(O)Omega	Notation	(Ω)Theta	Notation	(Θ)	Little-O	Notation	(o)Little-Omega	Notation	(ω)Summary	Of	Asymptotic	NotationsReal-World	Applications	Of	Asymptotic	NotationConclusionFrequently	Asked	Questions	Big	O	Notation	|	Complexity,	Applications	&	More	(+Examples)	Understanding	Big	O	NotationTypes	Of	Time
ComplexitySpace	Complexity	In	Big	O	NotationHow	To	Determine	Big	O	ComplexityBest,	Worst,	And	Average	Case	ComplexityApplications	Of	Big	O	NotationConclusionFrequently	Asked	Questions	Time	Complexity	Of	Algorithms:	Types,	Notations,	Cases,	and	More	What	Is	Time	Complexity?	Why	Do	You	Need	To	Calculate	Time	Complexity?	The	Time
Complexity	Algorithm	Cases	Time	Complexity:	Different	Types	Of	Asymptotic	Notations	How	To	Calculate	Time	Complexity?	Time	Complexity	Of	Sorting	Algorithms	Time	Complexity	Of	Searching	Algorithms	Writing	And	optimizing	An	algorithm	What	Is	Space	Complexity	And	Its	Significance?	Relation	Between	Time	And	Space	Complexity	Conclusion
What	Is	Linear	Data	Structure?	Types,	Uses	&	More	(+	Examples)	What	Is	Linear	Data	Structure?Key	Characteristics	Of	Linear	Data	StructuresWhat	Are	The	Types	Of	Linear	Data	Structures?What	Is	An	Array	Linear	Data	Structure?What	Are	Linked	Lists	Linear	Data	Structure?What	Is	A	Stack	Linear	Data	Structure?What	Is	A	Queue	Linear	Data
Structure?Most	Common	Operations	Performed	in	Linear	Data	StructuresAdvantages	Of	Linear	Data	StructuresWhat	Is	Nonlinear	Data	Structure?Difference	Between	Linear	&	Non-Linear	Data	StructuresWho	Uses	Linear	Data	Structures?ConclusionFrequently	Asked	Questions	What	is	The	Difference	Between	Linear	And	Non	Linear	Data	Structure?
What	is	a	linear	data	structure?	What	is	a	non-linear	data	structure?	Difference	between	linear	data	structure	and	non-linear	data	structure	FAQs	about	linear	and	non-linear	data	structures	What	Is	Linear	Search?	Algorithm,	Working,	Complexity	&	Examples	What	Is	Search?What	Is	Linear	Search	In	Data	Structure?What	Is	Linear	Search	Algorithm?
Working	Of	Linear	Search	AlgorithmComplexity	Of	Linear	Search	Algorithm	In	Data	StructuresImplementations	Of	Linear	Search	Algorithm	In	Different	Programming	LanguagesReal-World	Applications	Of	Linear	Search	In	Data	StructureAdvantages	&	Disadvantages	Of	Linear	SearchBest	Practices	For	Using	Linear	Search
AlgorithmConclusionFrequently	Asked	Questions	Binary	Search	Algorithm	|	Iterative	&	Recursive	With	Code	Examples	What	Is	The	Binary	Search	Algorithm?Conditions	For	Using	Binary	SearchSteps	For	Implementing	Binary	SearchIterative	Method	For	Binary	Search	With	Implementation	ExamplesRecursive	Method	For	Binary	SearchComplexity
Analysis	Of	Binary	Search	AlgorithmIterative	Vs.	Recursive	Implementation	Of	Binary	SearchAdvantages	&	Disadvantages	Of	Binary	SearchPractical	Applications	&	Real-World	Examples	Of	Binary	SearchConclusionFrequently	Asked	Questions	Jump	Search	Algorithm	|	Working,	Applications	&	More	(+Examples)	Understanding	The	Jump	Search
AlgorithmHow	Jump	Search	Works?Code	Implementation	Of	Jump	Search	AlgorithmTime	And	Space	Complexity	AnalysisAdvantages	Of	Jump	SearchDisadvantages	Of	Jump	SearchApplications	Of	Jump	SearchConclusionFrequently	Asked	Questions	Sorting	In	Data	Structures	-	All	Techniques	Explained	(+Examples)	What	Is	Sorting	In	Data	Structures?
What	Is	Bubble	Sort?What	Is	Selection	Sort?What	Is	Insertion	Sort?What	Is	Merge	Sort?What	Is	Quick	Sort?What	Is	Heap	Sort?What	Is	Radix	Sort?What	Is	Bucket	Sort?What	Is	Counting	Sort?What	Is	Shell	Sort?Choosing	The	Right	Sorting	AlgorithmApplications	Of	SortingConclusionFrequently	Asked	Questions	Learn	All	About	Bubble	Sort	Algorithm
(With	Code	Examples)	Understanding	Bubble	Sort	AlgorithmBubble	Sort	AlgorithmImplementation	Of	Bubble	Sort	In	C++Time	And	Space	Complexity	Analysis	Of	Bubble	Sort	AlgorithmAdvantages	Of	Bubble	Sort	AlgorithmDisadvantages	Of	Bubble	Sort	AlgorithmApplications	of	Bubble	Sort	AlgorithmsConclusionFrequently	Asked	Questions	Merge
Sort	Algorithm	|	Working,	Applications	&	More	(+Examples)	Understanding	The	Merge	Sort	AlgorithmAlgorithm	For	Merge	SortImplementation	Of	Merge	Sort	In	C++Time	And	Space	Complexity	Analysis	Of	Merge	SortAdvantages	And	Disadvantages	Of	Merge	SortApplications	Of	Merge	Sort	ConclusionFrequently	Asked	Questions	What	Is	Selection
Sort	Algorithm?	Explained	With	Code	Examples	Understanding	The	Selection	Sort	AlgorithmAlgorithmic	Approach	To	Selection	SortImplementation	Of	Selection	Sort	AlgorithmComplexity	Analysis	Of	Selection	SortComparison	Of	Selection	Sort	With	Other	Sorting	AlgorithmsAdvantages	And	Disadvantages	Of	Selection	SortApplication	Of	Selection
SortConclusionFrequently	Asked	Questions	Insertion	Sort	Algorithm	-	Working	Explained	(+Code	Examples)	What	Is	Insertion	Sort	Algorithm?How	Does	Insertion	Sort	Work?	(Step-by-Step	Explanation)Implementation	of	Insertion	Sort	in	C++Time	And	Space	Complexity	Of	Insertion	SortApplications	Of	Insertion	Sort	AlgorithmComparison	With	Other
Sorting	AlgorithmsConclusion	Frequently	Asked	Questions	Quick	Sort	Algorithm	|	Working,	Applications	&	More	(+Examples)	Understanding	Quick	Sort	AlgorithmStep-By-Step	Working	Of	Quick	SortImplementation	Of	Quick	Sort	AlgorithmTime	Complexity	Analysis	Of	Quick	SortAdvantages	Of	Quick	Sort	AlgorithmDisadvantages	Of	Quick	Sort
AlgorithmApplications	Of	Quick	Sort	AlgorithmConclusionFrequently	Asked	Questions	Heap	Sort	Algorithm	-	Working	And	Applications	(+	Code	Examples)	Understanding	The	Heap	Data	StructureWorking	Of	Heap	Sort	Algorithm	Implementation	Of	Heap	Sort	AlgorithmAdvantages	Of	Heap	SortDisadvantages	Of	Heap	SortReal-World	Applications	Of
Heap	SortConclusionFrequently	Asked	Questions	Counting	Sort	Algorithm	In	Data	Structures	(Working	&	Example)	Understanding	The	Counting	Sort	AlgorithmConditions	For	Using	Counting	Sort	AlgorithmHow	Counting	Sort	Algorithm	Works?Implementation	Of	Counting	Sort	AlgorithmTime	And	Space	Complexity	Analysis	Of	Counting
SortComparison	Of	Counting	Sort	With	Other	Sorting	AlgorithmsAdvantages	Of	Counting	Sort	AlgorithmDisadvantages	Of	Counting	Sort	AlgorithmApplications	Of	Counting	Sort	Algorithm	ConclusionFrequently	Asked	Questions	Shell	Sort	Algorithm	In	Data	Structures	(With	Code	Examples)	Understanding	Shell	Sort	AlgorithmWorking	Of	Shell	Sort
AlgorithmImplementation	Of	Shell	Sort	AlgorithmTime	Complexity	Analysis	Of	Shell	Sort	AlgorithmAdvantages	Of	Shell	Sort	AlgorithmDisadvantages	Of	Shell	Sort	AlgorithmApplications	Of	Shell	Sort	AlgorithmConclusionFrequently	Asked	Questions	Linked	List	In	Data	Structures	|	Types,	Operations	&	More	(+Code)	What	Is	Linked	List	In	Data
Structures?Types	Of	Linked	Lists	In	Data	StructuresLinked	List	Operations	In	Data	StructuresAdvantages	And	Disadvantages	Of	Linked	Lists	In	Data	StructuresComparison	Of	Linked	Lists	And	ArraysApplications	Of	Linked	Lists	ConclusionFrequently	Asked	Questions	Single	Linked	List	In	Data	Structure	|	All	Operations	(+Examples)	What	Is	A	Singly
Linked	List	In	Data	Structure?Insertion	Operations	On	Singly	Linked	ListsDeletion	Operation	On	Singly	Linked	ListSearching	For	Elements	In	Single	Linked	ListCalculating	Length	Of	Single	Linked	ListPractical	Applications	Of	Singly	Linked	Lists	In	Data	StructureCommon	Problems	With	Singly	Linked	ListsConclusionFrequently	Asked	Questions
(FAQ)	Reverse	A	Linked	List	|	All	Approaches	Explained	+Code	Examples	What	Is	A	Linked	List?Reverse	A	Linked	ListHow	To	Reverse	A	Linked	List?	(Approaches)Recursive	Approach	To	Reverse	A	Linked	ListIterative	Approach	To	Reverse	A	Linked	ListUsing	Stack	To	Reverse	A	Linked	ListComplexity	Analysis	Of	Different	Approaches	To	Reverse	A
Linked	ListConclusionFrequently	Asked	Questions	Stack	In	Data	Structures	|	Operations,	Uses	&	More	(+Examples)	What	Is	A	Stack	In	Data	Structure?Understanding	Stack	OperationsStack	Implementation	In	Data	StructuresStack	Implementation	Using	ArraysStack	Implementation	Using	Linked	ListsComparison:	Array	vs.	Linked	List
ImplementationApplications	Of	Stack	In	Data	StructuresAdvantages	And	Disadvantages	Of	Stack	Data	StructureConclusionFrequently	Asked	Questions	Graph	Data	Structure	|	Types,	Algorithms	&	More	(+Code	Examples)	What	Is	A	Graph	Data	Structure?Importance	Of	Graph	Data	StructuresTypes	Of	Graphs	In	Data	StructureTypes	Of	Graph
AlgorithmsApplication	Of	Graphs	In	Data	StructuresChallenges	And	Complexities	In	GraphsConclusionFrequently	Asked	Questions	What	Is	Tree	Data	Structure?	Operations,	Types	&	More	(+Examples)	What	Is	Tree	Data	Structure?Terminologies	Of	Tree	Data	Structure:	Different	Types	Of	Tree	Data	StructuresBasic	Operations	On	Tree	Data
StructureApplications	Of	Tree	Data	StructuresComparison	Of	Trees,	Graphs,	And	Linear	Data	StructuresAdvantages	Of	Tree	Data	StructureDisadvantages	Of	Tree	Data	StructureConclusionFrequently	Asked	Questions	Dynamic	Programming	-	From	Basics	To	Advanced	(+Code	Examples)	What	Is	Dynamic	Programming?Real-Life	Example:	The	Jigsaw
Puzzle	AnalogyHow	To	Solve	A	Problem	Using	Dynamic	Programming?Dynamic	Programming	Algorithm	TechniquesAdvantages	Of	Dynamic	ProgrammingDisadvantages	Of	Dynamic	ProgrammingApplications	Of	Dynamic	Programming	ConclusionFrequently	Asked	Questions	Sliding	Window	Algorithm	-	Working	Explained	With	Code	Examples
Understanding	The	Sliding	Window	AlgorithmHow	Does	The	Sliding	Window	Algorithm	Works?How	To	Identify	Sliding	Window	Problems?Fixed-Size	Sliding	Window	Example:	Maximum	Sum	Subarray	Of	Size	kVariable-Size	Sliding	Window	Example:	Smallest	Subarray	With	A	Given	SumAdvantages	Of	Sliding	Window	TechniqueDisadvantages	Of
Sliding	Window	TechniqueConclusionFrequently	Asked	Questions	55+	Data	Structure	Interview	Questions	For	2025	(Detailed	Answers)	Introduction	To	Data	StructuresData	Structures	Interview	Questions:	BasicsData	Structures	Interview	Questions:	IntermediateData	Structures	Interview	Questions:	AdvancedConclusion	Data	structures	are	the
fundamental	building	blocks	of	computer	programming.	They	define	how	data	is	organized,	stored,	and	manipulated	within	a	program.	Understanding	data	structures	is	very	important	for	developing	efficient	and	effective	algorithms.	What	is	Data	Structure?A	data	structure	is	a	storage	that	is	used	to	store	and	organize	data.	It	is	a	way	of	arranging
data	on	a	computer	so	that	it	can	be	accessed	and	updated	efficiently.A	data	structure	is	not	only	used	for	organizing	the	data.	It	is	also	used	for	processing,	retrieving,	and	storing	data.	There	are	different	basic	and	advanced	types	of	data	structures	that	are	used	in	almost	every	program	or	software	system	that	has	been	developed.	So	we	must	have
good	knowledge	about	data	structures.	Classification	of	Data	StructureClassification	of	Data	StructureLinear	Data	Structure:	Data	structure	in	which	data	elements	are	arranged	sequentially	or	linearly,	where	each	element	is	attached	to	its	previous	and	next	adjacent	elements,	is	called	a	linear	data	structure.	Example:	Array,	Stack,	Queue,	Linked
List,	etc.Static	Data	Structure:	Static	data	structure	has	a	fixed	memory	size.	It	is	easier	to	access	the	elements	in	a	static	data	structure.	Example:	array.Dynamic	Data	Structure:	In	dynamic	data	structure,	the	size	is	not	fixed.	It	can	be	randomly	updated	during	the	runtime	which	may	be	considered	efficient	concerning	the	memory	(space)
complexity	of	the	code.	Example:	Queue,	Stack,	etc.Non-Linear	Data	Structure:	Data	structures	where	data	elements	are	not	placed	sequentially	or	linearly	are	called	non-linear	data	structures.	In	a	non-linear	data	structure,	we	can’t	traverse	all	the	elements	in	a	single	run	only.	Examples:	Trees	and	Graphs.Please	refer	Complete	Data	Structures	&
Algorithms	Tutorial	for	topic-wise	guide,	practice	problems	and	interview	questions.	What	are	data	structures?What	are	algorithms?Why	learn	data	structures	and	algorithms?When	are	you	ready	to	learn	about	data	structures	and	algorithms?	Understanding	data	structures1.	ArraysOperations	and	time	complexity2.	Linked	listsTypes	of	linked
listsSingly	linked	listDoubly	linked	listCircular	linked	listOperations	and	time	complexity3.	StacksOperations	and	time	complexity4.	QueuesOperations	and	time	complexity5.	TreesTypes	of	treesBinary	treeBinary	search	tree	(BST)AVL	tree	(Balanced	BST)Heap	(Min-heap,	max-heap)Operations	and	time	complexityTrieOperations	and	time	complexity6.
GraphsTypes	of	graphsDirected	graph	(Digraph)Undirected	graphWeighted	graphAcyclic	graphGraph	representationExploring	algorithms1.	Searching	algorithmsLinear	searchBinary	search2.	Sorting	algorithmsBubble	sortMerge	sort3.	Graph	algorithmsDepth-first	search	(DFS)Breadth-first	search	(BFS)4.	Dynamic	programmingA	6-step	roadmap	to
building	DSA	proficiencyBuilding	a	strong	foundation	Data	structures	are	the	fundamental	building	blocks	of	computer	programming.	They	define	how	data	is	organized,	stored,	and	manipulated	within	a	program.	Understanding	data	structures	is	very	important	for	developing	efficient	and	effective	algorithms.	What	is	Data	Structure?A	data	structure
is	a	storage	that	is	used	to	store	and	organize	data.	It	is	a	way	of	arranging	data	on	a	computer	so	that	it	can	be	accessed	and	updated	efficiently.A	data	structure	is	not	only	used	for	organizing	the	data.	It	is	also	used	for	processing,	retrieving,	and	storing	data.	There	are	different	basic	and	advanced	types	of	data	structures	that	are	used	in	almost
every	program	or	software	system	that	has	been	developed.	So	we	must	have	good	knowledge	about	data	structures.	Classification	of	Data	StructureClassification	of	Data	StructureLinear	Data	Structure:	Data	structure	in	which	data	elements	are	arranged	sequentially	or	linearly,	where	each	element	is	attached	to	its	previous	and	next	adjacent
elements,	is	called	a	linear	data	structure.	Example:	Array,	Stack,	Queue,	Linked	List,	etc.Static	Data	Structure:	Static	data	structure	has	a	fixed	memory	size.	It	is	easier	to	access	the	elements	in	a	static	data	structure.	Example:	array.Dynamic	Data	Structure:	In	dynamic	data	structure,	the	size	is	not	fixed.	It	can	be	randomly	updated	during	the
runtime	which	may	be	considered	efficient	concerning	the	memory	(space)	complexity	of	the	code.	Example:	Queue,	Stack,	etc.Non-Linear	Data	Structure:	Data	structures	where	data	elements	are	not	placed	sequentially	or	linearly	are	called	non-linear	data	structures.	In	a	non-linear	data	structure,	we	can’t	traverse	all	the	elements	in	a	single	run
only.	Examples:	Trees	and	Graphs.Please	refer	Complete	Data	Structures	&	Algorithms	Tutorial	for	topic-wise	guide,	practice	problems	and	interview	questions.	Data	structures	are	the	fundamental	building	blocks	of	computer	programming.	They	define	how	data	is	organized,	stored,	and	manipulated	within	a	program.	Understanding	data	structures
is	very	important	for	developing	efficient	and	effective	algorithms.	What	is	Data	Structure?A	data	structure	is	a	storage	that	is	used	to	store	and	organize	data.	It	is	a	way	of	arranging	data	on	a	computer	so	that	it	can	be	accessed	and	updated	efficiently.A	data	structure	is	not	only	used	for	organizing	the	data.	It	is	also	used	for	processing,	retrieving,
and	storing	data.	There	are	different	basic	and	advanced	types	of	data	structures	that	are	used	in	almost	every	program	or	software	system	that	has	been	developed.	So	we	must	have	good	knowledge	about	data	structures.	Classification	of	Data	StructureClassification	of	Data	StructureLinear	Data	Structure:	Data	structure	in	which	data	elements	are
arranged	sequentially	or	linearly,	where	each	element	is	attached	to	its	previous	and	next	adjacent	elements,	is	called	a	linear	data	structure.	Example:	Array,	Stack,	Queue,	Linked	List,	etc.Static	Data	Structure:	Static	data	structure	has	a	fixed	memory	size.	It	is	easier	to	access	the	elements	in	a	static	data	structure.	Example:	array.Dynamic	Data
Structure:	In	dynamic	data	structure,	the	size	is	not	fixed.	It	can	be	randomly	updated	during	the	runtime	which	may	be	considered	efficient	concerning	the	memory	(space)	complexity	of	the	code.	Example:	Queue,	Stack,	etc.Non-Linear	Data	Structure:	Data	structures	where	data	elements	are	not	placed	sequentially	or	linearly	are	called	non-linear
data	structures.	In	a	non-linear	data	structure,	we	can’t	traverse	all	the	elements	in	a	single	run	only.	Examples:	Trees	and	Graphs.Please	refer	Complete	Data	Structures	&	Algorithms	Tutorial	for	topic-wise	guide,	practice	problems	and	interview	questions.	Data	structures	are	the	fundamental	building	blocks	of	computer	programming.	They	define
how	data	is	organized,	stored,	and	manipulated	within	a	program.	Understanding	data	structures	is	very	important	for	developing	efficient	and	effective	algorithms.	What	is	Data	Structure?A	data	structure	is	a	storage	that	is	used	to	store	and	organize	data.	It	is	a	way	of	arranging	data	on	a	computer	so	that	it	can	be	accessed	and	updated
efficiently.A	data	structure	is	not	only	used	for	organizing	the	data.	It	is	also	used	for	processing,	retrieving,	and	storing	data.	There	are	different	basic	and	advanced	types	of	data	structures	that	are	used	in	almost	every	program	or	software	system	that	has	been	developed.	So	we	must	have	good	knowledge	about	data	structures.	Classification	of
Data	StructureClassification	of	Data	StructureLinear	Data	Structure:	Data	structure	in	which	data	elements	are	arranged	sequentially	or	linearly,	where	each	element	is	attached	to	its	previous	and	next	adjacent	elements,	is	called	a	linear	data	structure.	Example:	Array,	Stack,	Queue,	Linked	List,	etc.Static	Data	Structure:	Static	data	structure	has	a
fixed	memory	size.	It	is	easier	to	access	the	elements	in	a	static	data	structure.	Example:	array.Dynamic	Data	Structure:	In	dynamic	data	structure,	the	size	is	not	fixed.	It	can	be	randomly	updated	during	the	runtime	which	may	be	considered	efficient	concerning	the	memory	(space)	complexity	of	the	code.	Example:	Queue,	Stack,	etc.Non-Linear	Data
Structure:	Data	structures	where	data	elements	are	not	placed	sequentially	or	linearly	are	called	non-linear	data	structures.	In	a	non-linear	data	structure,	we	can’t	traverse	all	the	elements	in	a	single	run	only.	Examples:	Trees	and	Graphs.Please	refer	Complete	Data	Structures	&	Algorithms	Tutorial	for	topic-wise	guide,	practice	problems	and
interview	questions.	Share	—	copy	and	redistribute	the	material	in	any	medium	or	format	for	any	purpose,	even	commercially.	Adapt	—	remix,	transform,	and	build	upon	the	material	for	any	purpose,	even	commercially.	The	licensor	cannot	revoke	these	freedoms	as	long	as	you	follow	the	license	terms.	Attribution	—	You	must	give	appropriate	credit	,
provide	a	link	to	the	license,	and	indicate	if	changes	were	made	.	You	may	do	so	in	any	reasonable	manner,	but	not	in	any	way	that	suggests	the	licensor	endorses	you	or	your	use.	ShareAlike	—	If	you	remix,	transform,	or	build	upon	the	material,	you	must	distribute	your	contributions	under	the	same	license	as	the	original.	No	additional	restrictions	—
You	may	not	apply	legal	terms	or	technological	measures	that	legally	restrict	others	from	doing	anything	the	license	permits.	You	do	not	have	to	comply	with	the	license	for	elements	of	the	material	in	the	public	domain	or	where	your	use	is	permitted	by	an	applicable	exception	or	limitation	.	No	warranties	are	given.	The	license	may	not	give	you	all	of
the	permissions	necessary	for	your	intended	use.	For	example,	other	rights	such	as	publicity,	privacy,	or	moral	rights	may	limit	how	you	use	the	material.	Cookies	are	disabled	in	your	browser	settings.	To	fully	access	our	website	and	its	features,	please	enable	cookies	and	Refresh	the	page.	By	javinpaul	Data	structures	and	algorithms	are	some	of	the
most	essential	topics	for	programmers,	both	to	get	a	job	and	to	do	well	on	a	job.	Good	knowledge	of	data	structures	and	algorithms	is	the	foundation	of	writing	good	code.	If	you	are	familiar	with	essential	data	structures	e.g.	array,	string,	linked	list,	tree,	map,	and	advanced	data	structures	like	tries,	and	self-balanced	trees	like	AVL	trees,	etc.,	you’ll
know	when	to	use	which	data	structure	and	compute	the	CPU	and	memory	cost	of	your	code.	Even	though	you	don’t	need	to	write	your	own	array,	linked	list,	or	hashtable,	given	every	major	programming	SDK	provides	them,	e.g.	JDK	or	C++	STL	library,	you	will	need	to	understand	them	so	that	you	can	use	them	in	the	right	place.	Using	the	right
data	structure	can	drastically	improve	the	performance	of	an	algorithm.	Ideally,	we	should	all	learn	data	structures	and	algorithms	in	our	schools	and	colleges,	but	it’s	rarely	ever	covered.	Most	of	the	programmers,	including	myself,	only	get	introduced	to	a	data	structure	in	our	computer	science	courses,	but	we	didn’t	really	learn	the	real-world
importance	of	them,	and	that’s	why	we	didn’t	understand	them	better.	For	us,	they	are	just	the	algorithms	and	data	structures	e.g.	some	concept,	not	a	tool	that	you	can	use	to	write	good	programs.	We	didn’t	know	that	Facebook	would	use	them	to	store	our	details	or	that	Google	would	use	them	to	store	web	pages	and	link	to	search	queries.	Anyway,
it’s	never	too	late.	If	you	think	that	your	data	structure	knowledge	is	not	up	to	par	or	you	want	to	improve	your	data	structure	knowledge,	then	you	have	come	to	the	right	place.	Earlier,	I	shared	some	free	books	to	learn	data	structures	and	algorithms,	and	in	this	article,	you	will	learn	about	some	of	the	best	data	structure	and	algorithm	courses	that
are	available	for	free	online.	Here	is	my	list	of	some	of	the	best	courses	to	learn	data	structures	and	algorithms,	which	are	also	free.	Many	programmers	think	that	free	resources	are	not	good,	which	is	not	true.	Even	though	they	sometimes	don’t	match	the	quality	and	coverage	of	paid	resources,	they	are,	in	fact,	the	best	resources	to	start	with.	You
can	use	these	courses	to	familiarize	yourself	with	the	essential	data	structures	and	learn	some	basics.	Some	of	them	are	particularly	good	from	an	interview	point	of	view	so	you	can	use	them	alongside	any	book	you	are	using	to	prepare	for	your	programming	job	interview.	This	is	another	free,	online	algorithm	and	data	structure	training	course,
which	aims	to	teach	basic	data	structures	in	computer	programming.	The	data	structures	taught	in	the	course	include	Stack,	Queue,	and	Linked	List	using	the	C	programming	language.	The	primary	goal	of	this	course	is	to	make	students	and	software	engineers	visualize	how	different	data	structures	work.	Data	Structures	Concepts	in	C	This	is	not	an
exhaustive	course,	but	you	will	learn	about	Stack,	Queue,	and	Linked	List.	In	short,	it	is	a	great	course	for	programmers	new	to	data	structures	and	those	who	have	just	learned	a	programming	language	and	want	to	learn	the	basics	of	how	data	structures	work.	This	is	the	first	part	of	a	two-part	series	of	courses	covering	algorithms	and	data	structures
on	Courera	by	Robert	Sedgewick.	In	this	part,	you	will	learn	essential	data	structures	like	linked	lists,	stacks,	queues,	binary	trees,	and	hash	tables,	and	searching	and	sorting	algorithms	like	binary	search,	quicksort,	mergesort,	insertion	sort	etc.	Algorithms	Part	1	You	will	also	learn	about	core	data	structures	and	algorithms	used	in	everyday
applications	and	understand	the	trade-offs	involved	with	choosing	each	data	structure	along	with	traversal,	retrieval,	and	update	algorithms.	All	the	features	of	this	course	are	available	for	free	but	it	does	not	offer	a	certificate	upon	completion.	This	is	the	second	part	of	a	two-part	series	of	free	online	Coursera	courses	covering	data	structures	and
algorithms	by	Robert	Sedgewick	and	Kevin	Wayne,	both	are	professors	of	Computer	Science.	Robert	Sedgewick	is	also	the	author	of	Algorithms	(4th	Edition)	book,	one	of	the	most	popular	books	on	Algorithms	for	Java	developers.	In	this	part,	you	will	learn	about	the	graph-	and	string-processing	algorithms.	You	will	also	learn	some	advanced	data
structures	and	algorithms	used	in	application	development.	Talking	about	the	social	proof,	both	Algorithms	Part	1	and	Algorithms	Part	2	are	highly	recommended	courses	and	have	impressive	reviews	and	ratings.	Algorithms	—	Part	2	This	is	an	introductory	online	course	on	data	structures,	algorithms,	and	complexity	analyses.	It	will	teach	you	design,
implementation,	and	analyses	of	basic	data	structures	using	the	Java	language.	The	best	part	of	this	course	is	the	number	of	practical	examples	and	that	it	focuses	on	intuition	rather	than	formulas	and	mathematical	proofs.	Data	Structure	in	Java	The	course	provides	a	good	introduction	for	“complexity	analysis,”	which	makes	it	possible	to	spot	a
poorly	(and	a	great)	performing	program,	even	without	the	need	for	executing	it.	That’s	all	about	some	of	the	free	data	structure	and	algorithm	courses	available	online.	You	can	use	these	courses	to	learn	data	structures	and	algorithms	at	your	own	pace.	They	may	not	all	be	comprehensive,	but	they	do	provide	a	good	introduction.	Once	you	go
through	these	courses,	you	can	pick	a	good	book	like	Introduction	to	Algorithms	to	further	supplement	your	knowledge.	Update:	this	course	is	no	longer	free,	but	it's	a	great	course	and	may	be	worth	it	for	you.	This	data	structure	and	algorithm	courses	from	Udemy	is	for	all	those	people	who	want	to	learn	data	structures	from	an	absolute	basic	to
advanced	level.	This	course	doesn’t	expect	you	to	have	any	prior	knowledge	of	data	structures,	but	a	basic	prior	knowledge	of	Java	is	helpful.	The	author	@William	Fiset	is	a	Software	Engineer	at	Google	and	a	former	ACM-ICPC	world	finalist	and	has	excellent	computer	programming	and	problem-solving	skills.	Talking	about	social	proof,	the	course
has	more	than	25K	students	and	an	average	4.1	ratings	from	683	rating	which	is	impressive.	In	short,	it’s	a	complete	guide	to	learning	everything	there	is	to	know	about	data	structures.	Easy	to	Advanced	Data	Structures	This	is	also	an	ideal	course	for	computer	science	students	and	working	software	professionals	who	want	to	learn	data	structures
and	algorithms	from	an	interview	perspective.	So,	if	you	are	looking	to	get	a	job	with	product-based	companies	like	Amazon,	Google,	Microsoft,	or	Facebook,	you	can	use	this	course	to	kick-start	your	preparation.	Thanks.	You	made	it	to	the	end	of	the	article.	Good	luck	with	your	programming	Journey!	It’s	certainly	not	going	to	be	easy,	but	by
following	these	courses,	you	are	one	step	closer	to	mastering	data	structure	and	algorithms	than	others.	If	you	like	this	article,	then	please	share	with	your	friends	and	colleagues,	and	don’t	forget	to	follow	javinpaul	on	Twitter!	How	can	financial	brands	set	themselves	apart	through	visual	storytelling?	Our	experts	explain	how.Learn	MoreThe
Motorsport	Images	Collections	captures	events	from	1895	to	today’s	most	recent	coverage.Discover	The	CollectionCurated,	compelling,	and	worth	your	time.	Explore	our	latest	gallery	of	Editors’	Picks.Browse	Editors'	FavoritesHow	can	financial	brands	set	themselves	apart	through	visual	storytelling?	Our	experts	explain	how.Learn	MoreThe
Motorsport	Images	Collections	captures	events	from	1895	to	today’s	most	recent	coverage.Discover	The	CollectionCurated,	compelling,	and	worth	your	time.	Explore	our	latest	gallery	of	Editors’	Picks.Browse	Editors'	FavoritesHow	can	financial	brands	set	themselves	apart	through	visual	storytelling?	Our	experts	explain	how.Learn	MoreThe
Motorsport	Images	Collections	captures	events	from	1895	to	today’s	most	recent	coverage.Discover	The	CollectionCurated,	compelling,	and	worth	your	time.	Explore	our	latest	gallery	of	Editors’	Picks.Browse	Editors'	Favorites	MODULE	1Introduction	of	Data	Structure	and	algorithmMODULE	2Complexity	analysis	of	Data	Structure	and
AlgorithmsMODULE	3Common	Problem	Solving	TechniquesMODULE	4Array	Data	StructureMODULE	5Searching	AlgorithmsMODULE	6Sorting	AlgorithmsMODULE	7Array	Advanced	AlgorithmsMODULE	8String	Data	StructureMODULE	9String	Pattern	MatchingMODULE	10String	Advanced	AlgorithmsMODULE	12Stacks	and	QueuesMODULE
15Greedy	Algorithms	and	Dynamic	ProgrammingMODULE	17Graph	Connected	ComponentsMODULE	19Shortest	Path	AlgorithmsMODULE	20Graph	flow	algorithmsMODULE	21Graph	Advanced	AlgorithmsMODULE	22Maths	and	AlgebraYou	can	claim	your	course	certificate	upon	course	completion.	You	would	be	able	to	use	this	certificate	on	your
resume,	Linkedin	profile	or	your	website.Learn	MoreHave	you	ever	wondered	why	most	of	the	product-based	companies	focus	so	much	on	data	structures	and	algorithms	in	their	interviews	for	positions	like	Software	Development	Engineer,	Data	Scientist,	Machine	Learning	Engineer,	and	so	on?	If	yes,	all	the	answers	to	your	questions	lie	here.It’s
always	crucial	to	understand	why	to	learn	data	structures	and	algorithms,	their	needs	and	applications,	and	other	questions	related	to	data	structures	and	algorithms.	Let's	deep	dive	into	it.	Data	Structure	is	a	way	to	organize	and	store	data	in	a	computer	so	that	it	can	be	accessed	and	used	efficiently.	Data	structures	provide	logical	and	organized
way	of	representing	and	manipulating	data.As	an	example	consider	a	phonebook	where	we	can	search	for	a	person's	phone	name	by	looking	up	their	phone	number.	Data	Structures	can	be	classified	in	two	categories:	Primitive	data	structure:	It	can	store	simple	values	such	as	integers,	characters,	and	floating-point	numbers.	Non-primitive	data
structure:	It	can	store	multiple	data	elements	of	different	types.	They	are	furthur	divided	in	two	categories:	Linear:	In	linear	data	structures,	the	data	elements	are	arranged	in	a	sequential	manner,	such	as	arrays,	linked	lists,	and	stacks.	Non-Linear:	In	non-linear	data	structures	data	elements	are	not	arranged	in	a	sequential	manner,	such	as	trees
and	graphs.	Each	data	structure	has	its	own	advantages	and	disadvantages,	and	choosing	the	right	one	for	a	specific	application	is	essential	for	efficient	processing	and	storage	of	data.	Consider	the	above	example	of	PhoneBook.	It	can	be	implemented	using	Hash-tables	where	each	entry	consists	of	a	name	and	phone	number.	Data	Structure	is
something	that	can	be	used	to	store	and	organize	data	in	a	particular	fashion.	And,	now	comes	the	algorithm.	An	algorithm	is	a	step-by-step	set	of	instructions	to	solve	a	particular	problem.In	simple	words,	you	can	say	that	Data	Structures	are	nothing	but	“meaningful”	arrangements	of	data	that	algorithms	can	use	to	solve	any	particular	problem!Can
you	imagine	going	to	a	library	and	finding	all	10,000	books	stored	randomly?	No!	It	will	be	a	very	hectic	task	to	find	the	book	you	want.	So	we	need	to	create	an	better	or	optimized	solution	to	store	and	search	the	books	instead	of	a	simple	solution	of	randomly	searching.	And	that’s	why	we	need	to	learn	data	structures	and	algorithms	and	understand
their	tradeoffs	for	different	situations	to	be	able	to	create	optimized	solutions	To	solve	some	real-world	complex	problems:	Yes	you	heard	it	right.	Consider	the	above	example	of	searching	books	in	the	library,	there	you	can't	search	books	randomly,	you	need	a	proper	approach	to	search	books	in	order	to	save	time,	and	here	data	structures	and
algorithms	came	into	play	to	solve	some	real-life	based	problems.	Optimization	and	Scalability:	Once	you	have	knowledge	of	data	structures	and	algorithms,	you	can	easily	decide	which	data	structure	can	be	used	at	which	place	and	which	algorithm	will	be	best	for	your	use	case.	This	helps	in	writing	more	optimized	and	scalable	code.	Improving	your
problem	solving	skills:	DSA	is	your	toolbox	for	tackling	some	of	the	toughest	challenges	in	the	tech	world.	From	your	WhatsApp	chat	to	LinkedIn	Feed	-	everything	uses	DSA	user	the	hood	in	some	form.	Whether	you	build	your	own	projects,	participate	in	competitive	coding	contests	or	work	as	a	software	developer	-	the	knowledge	of	DSA	is	always
helpful.	For	job	opportunities:	Another	point	is	that	these	days	most	product-based	companies	ask	DSA	and	algorithms	in	their	interviews	as	they	want	to	judge	the	problem-solving	skills	of	the	candidate.	So	learning	DSA	and	algorithms	will	give	you	an	advantage	during	the	interviews	and	hence	can	land	you	in	your	dream	company.	Reducing	time
complexity-	DSA	plays	a	major	role	in	reducing	the	time	complexity	of	the	code.	A	problem	can	be	solved	using	various	approaches,	but	you	have	to	pick	the	optimized	one	in	order	to	be	more	productive	and	solve	the	problem	in	lesser	time.	It	can	be	done	through	learning	data	structures	and	algorithms.	The	core	of	computer	science	-	Data	structures
and	algorithms	are	considered	to	be	the	foundation	of	computer	science.	With	advancements	in	technologies,	more	and	more	data	is	getting	stored.	A	huge	amount	of	data	can	slow	down	the	processing	speed	of	computer	systems.	This	is	where	data	structures	can	help	us.	They	can	improve	the	processing	power	of	the	computer	by	the	effective
utilization	and	storage	of	data.	Learn	DSA	from	Scaler:	You	can	learn	DSA	through	the	Scaler	Topics.	We	offer	a	complete	series	of	in	depth	DSA	tutorials	along	with	suitable	real	life	examples.	These	are	targeted	for	absolute	beginners	who	want	to	dive	into	the	field	of	data	structures	and	algorithms.	Learn	through	books:	You	can	learn	DSA	through
various	available	books	also.	A	few	famous	books	are:	“Introduction	to	Algorithms”	by	Thomas	H.	Cormen,	“The	Algorithm	Design	Manual”	by	Steven	S.	Skiena,	“Algorithms”	by	Robert	Sedgewick,	and	Kevin	Wayne,	and	many	more.	There	are	a	lot	of	real-life	applications	of	Data	structures	and	algorithms	you	can	see	around	you.	Like	Facebook,	how
that	connection	and	friends	logic	is	built.	All	that	logic	is	built	through	Graph	data	structure.Similarly,	Google	maps	uses	the	Graph	data	structure	internally.	So	there	are	tons	of	applications	of	data	structures	and	algorithms	which	you	can	see	all	around	you.Some	of	the	problems	that	can	be	solved	using	DSA	and	Algorithms	are-	Knapsack	problem
Tower	of	Hanoi	Shortest	distance	between	two	points	Project	scheduling	and	many	more...	The	target	audience	of	this	tutorials	are	Computer	Science	graduates	as	well	as	Software	Professional	who	wants	to	learn	data	structures	and	algorithm	programming	in	simple	and	easy	manner.	Prerequisites	for	these	tutorials	are:	You	should	have	basic
understanding	of	any	one	of	below	languages:	Hope	you	get	an	idea	about	Data	structures	and	algorithms	and	their	importance	and	need.	One	should	learn	DSA	in	order	to	enhance	their	problem-solving	skills	and	for	better	job	opportunities	in	good	companies.	Python	has	been	used	worldwide	for	different	fields	such	as	making	websites,	artificial
intelligence	and	much	more.	But	to	make	all	of	this	possible,	data	plays	a	very	important	role	which	means	that	this	data	should	be	stored	efficiently	and	the	access	to	it	must	be	timely.	So	how	do	you	achieve	this?	We	use	something	called	Data	Structures.	With	that	being	said,	let	us	go	through	the	topics	we	will	cover	in	Data	Structures	in
Python.	The	article	has	been	broken	down	into	the	following	parts:So,	let’s	get	started	:)Organizing,	managing	and	storing	data	is	important	as	it	enables	easier	access	and	efficient	modifications.	Data	Structures	allows	you	to	organize	your	data	in	such	a	way	that	enables	you	to	store	collections	of	data,	relate	them	and	perform	operations	on	them
accordingly.	It	is	one	of	the	most	basic	concepts	that	beginners	get	to	know	about	when	learning	the	best	Python	course	online	for	exams		like	PCEP,	PCAP,	PCPP.			Python	has	implicit	support	for	Data	Structures	which	enable	you	to	store	and	access	data.	These	structures	are	called	List,	Dictionary,	Tuple	and	Set.Python	allows	its	users	to	create
their	own	Data	Structures	enabling	them	to	have	full	control	over	their	functionality.	The	most	prominent	Data	Structures	are	Stack,	Queue,	Tree,	Linked	List	and	so	on	which	are	also	available	to	you	in	other	programming	languages.	So	now	that	you	know	what	are	the	types	available	to	you,	why	don’t	we	move	ahead	to	the	Data	Structures	and
implement	them	using	Python.As	the	name	suggests,	these	Data	Structures	are	built-in	with	Python	which	makes	programming	easier	and	helps	programmers	use	them	to	obtain	solutions	faster.	Let’s	discuss	each	of	them	in	detail.ListsLists	are	used	to	store	data	of	different	data	types	in	a	sequential	manner.	There	are	addresses	assigned	to	every
element	of	the	list,	which	is	called	as	Index.	The	index	value	starts	from	0	and	goes	on	until	the	last	element	called	the	positive	index.	There	is	also	negative	indexing	which	starts	from	-1	enabling	you	to	access	elements	from	the	last	to	first.	Let	us	now	understand	lists	better	with	the	help	of	an	example	program.Creating	a	listTo	create	a	list,	you	use
the	square	brackets	and	add	elements	into	it	accordingly.	If	you	do	not	pass	any	elements	inside	the	square	brackets,	you	get	an	empty	list	as	the	output.	my_list	=	[]	#create	empty	list	print(my_list)	my_list	=	[1,	2,	3,	'example',	3.132]	#creating	list	with	data	print(my_list)	Output:	[]	[1,	2,	3,	‘example’,	3.132]Adding	ElementsAdding	the	elements	in
the	list	can	be	achieved	using	the	append(),	extend()	and	insert()	functions.The	append()	function	adds	all	the	elements	passed	to	it	as	a	single	element.	The	extend()	function	adds	the	elements	one-by-one	into	the	list.	The	insert()	function	adds	the	element	passed	to	the	index	value	and	increase	the	size	of	the	list	too.	my_list	=	[1,	2,	3]	print(my_list)
my_list.append([555,	12])	#add	as	a	single	element	print(my_list)	my_list.extend([234,	'more_example'])	#add	as	different	elements	print(my_list)	my_list.insert(1,	'insert_example')	#add	element	i	print(my_list)	Output:	[1,	2,	3]	[1,	2,	3,	[555,	12]]	[1,	2,	3,	[555,	12],	234,	‘more_example’]	[1,	‘insert_example’,	2,	3,	[555,	12],	234,	‘more_example’]Upskill
for	Higher	Salary	with	Python	Programming	CoursesDeleting	ElementsTo	delete	elements,	use	the	del	keyword	which	is	built-in	into	Python	but	this	does	not	return	anything	back	to	us.	If	you	want	the	element	back,	you	use	the	pop()	function	which	takes	the	index	value.	To	remove	an	element	by	its	value,	you	use	the	remove()	function.Example:
my_list	=	[1,	2,	3,	'example',	3.132,	10,	30]	del	my_list[5]	#delete	element	at	index	5	print(my_list)	my_list.remove('example')	#remove	element	with	value	print(my_list)	a	=	my_list.pop(1)	#pop	element	from	list	print('Popped	Element:	',	a,	'	List	remaining:	',	my_list)	my_list.clear()	#empty	the	list	print(my_list)	Output:	[1,	2,	3,	‘example’,	3.132,	30]	[1,
2,	3,	3.132,	30]	Popped	Element:	2	List	remaining:	[1,	3,	3.132,	30]	[]Accessing	ElementsAccessing	elements	is	the	same	as	accessing	Strings	in	Python.	You	pass	the	index	values	and	hence	can	obtain	the	values	as	needed.	my_list	=	[1,	2,	3,	'example',	3.132,	10,	30]	for	element	in	my_list:	#access	elements	one	by	one	print(element)	print(my_list)
#access	all	elements	print(my_list[3])	#access	index	3	element	print(my_list[0:2])	#access	elements	from	0	to	1	and	exclude	2	print(my_list[::-1])	#access	elements	in	reverse	Output:	1	2	3	example	3.132	10	30	[1,	2,	3,	‘example’,	3.132,	10,	30]	example	[1,	2]	[30,	10,	3.132,	‘example’,	3,	2,	1]Other	FunctionsYou	have	several	other	functions	that	can	be
used	when	working	with	lists.The	len()	function	returns	to	us	the	length	of	the	list.	The	index()	function	finds	the	index	value	of	value	passed	where	it	has	been	encountered	the	first	time.	The	count()	function	finds	the	count	of	the	value	passed	to	it.	The	sorted()	and	sort()	functions	do	the	same	thing,	that	is	to	sort	the	values	of	the	list.	The	sorted()
has	a	return	type	whereas	the	sort()	modifies	the	original	list.	my_list	=	[1,	2,	3,	10,	30,	10]	print(len(my_list))	#find	length	of	list	print(my_list.index(10))	#find	index	of	element	that	occurs	first	print(my_list.count(10))	#find	count	of	the	element	print(sorted(my_list))	#print	sorted	list	but	not	change	original	my_list.sort(reverse=True)	#sort	original
list	print(my_list)	Output:6	3	2	[1,	2,	3,	10,	10,	30]	[30,	10,	10,	3,	2,	1]String	A	string	is	a	sequence	of	characters	in	Python	used	to	represent	text.	Strings	are	immutable,	meaning	they	cannot	be	changed	after	they	are	created.Creating	a	String:Creating	a	string	is	as	easy	as	enclosing	characters	in	single	or	double	quotes.	my_string	=	"Hello,	World!"
print(my_string)	#	Output:	Hello,	World!	String	Operations:Concatenation:	Joining	two	or	more	strings	together.str1	=	“Hello”	str2	=	“Python”	result	=	str1	+	”	”	+	str2	print(result)			Output:	Hello	PythonRepetition:	Repeating	a	string	multiple	times.repeated	=	“Hi!	”	*	3	print(repeated)			Output:	Hi!	Hi!	Hi!Slicing:	Extracting	a	portion	of	a	string
using	index	positions.text	=	“Programming”	print(text[0:5])			Output:	ProgrLength:	Finding	the	number	of	characters	in	a	string.print(len(text))	Output:	11Changing	Case:	Convert	a	string	to	uppercase	or	lowercase.print(text.upper())	Output:	PROGRAMMINGByteArray	A	bytearray	in	Python	is	a	mutable	sequence	of	bytes.	It	allows	you	to	work	with
binary	data	and	modify	the	bytes	directly.	It’s	similar	to	a	list	of	integers	where	each	integer	represents	a	byte	(0	to	255).Example:	Creating,	Modifying,	and	Adding	Elements	to	a	bytearray#	Creating	a	bytearray	from	a	string	data	=	bytearray("Hello",	'utf-8')	print("Original	bytearray:",	data.decode('utf-8'))	#	Output:	Hello	#	Modifying	the	first	byte
(H	->	J)	data[0]	=	ord('J')	print("After	modification:",	data.decode('utf-8'))	#	Output:	Jello	#	Adding	a	single	byte	('!')	data.append(ord('!'))	#	Extending	the	bytearray	with	another	byte	sequence	('	World')	data.extend(bytearray("	World",	'utf-8'))	#	Final	output	print("Final	bytearray:",	data.decode('utf-8'))	#	Output:	Jello!	World	Output:Original
bytearray:	HelloAfter	modification:	JelloFinal	bytearray:	Jello!	WorldThis	example	covers	the	creation,	modification,	and	addition	of	elements	to	a	bytearray.Collections	Module:The	collections	module	in	Python	provides	specialized	container	data	types	that	extend	the	functionality	of	built-in	types	like	lists,	dictionaries,	and	tuples.Here	are	some	key
data	structures	from	the	collections	module,	along	with	code	examples	and	its	output:CounterCounter	is	a	subclass	of	dict	used	to	count	hashable	objects.	It	counts	the	frequency	of	elements	in	an	iterable.from	collections	import	Counter#	Example:	Count	frequencies	of	characters	in	a	string	data	=	"apple"	counter	=	Counter(data)	print(counter)
Output:Counter({‘p’:	2,	‘a’:	1,	‘l’:	1,	‘e’:	1})OrderedDictOrderedDict	is	a	dictionary	subclass	that	remembers	the	order	in	which	keys	were	inserted.from	collections	import	OrderedDict#	Example:	Create	an	ordered	dictionary	ordered_dict	=	OrderedDict()	ordered_dict['first']	=	1	ordered_dict['second']	=	2	ordered_dict['third']	=	3	print(ordered_dict)
Output:OrderedDict([(‘first’,	1),	(‘second’,	2),	(‘third’,	3)])Defaultdictdefaultdict	is	a	dictionary	that	returns	a	default	value	if	the	key	is	not	found.	You	can	specify	the	default	type	(like	int,	list,	etc.).from	collections	import	defaultdict#	Example:	defaultdict	with	int	(default	value	0)	dd	=	defaultdict(int)	dd['a']	+=	1	dd['b']	+=	2	print(dd)
Output:defaultdict(,	{‘a’:	1,	‘b’:	2})ChainMapChainMap	groups	multiple	dictionaries	into	a	single	view,	allowing	lookup	across	dictionaries.from	collections	import	ChainMap#	Example:	Chain	two	dictionaries	dict1	=	{'a':	1,	'b':	2}	dict2	=	{'b':	3,	'c':	4}	chain_map	=	ChainMap(dict1,	dict2)	print(chain_map['b'])	#	Value	from	dict1	takes	precedence
print(chain_map['c'])	#	Value	from	dict2	Output:24NamedTupleNamedTuple	is	a	lightweight,	immutable	object	that	provides	named	fields	for	accessing	data	like	a	class.from	collections	import	named	tuple#	Example:	Create	a	named	tuple	for	a	point	in	2D	space	Point	=	namedtuple('Point',	['x',	'y'])	p	=	Point(10,	20)	print(p.x,	p.y)	Output:10
20Dictdict	is	the	built-in	Python	dictionary,	a	mutable	data	type	used	to	store	key-value	pairs.#	Example:	Basic	dictionary	usage	dict_example	=	{'name':	'Alice',	'age':	25}	print(dict_example['name'])	dict_example['age']	=	26	print(dict_example)	Output:Alice{‘name’:	‘Alice’,	‘age’:	26}These	are	some	of	the	most	commonly	used	data	structures	from
the	collections	module	in	Python.	Each	offers	specialized	functionality	to	simplify	certain	tasks	in	Python	programming.UserDictUserDict	is	a	wrapper	around	the	regular	dictionary	(dict)	that	makes	it	easier	to	subclass	and	customize	dictionary	behavior.from	collections	import	UserDict#	Example:	Custom	dictionary	that	converts	keys	to	uppercase
class	MyDict(UserDict):	def	__setitem__(self,	key,	value):	super().__setitem__(key.upper(),	value)	my_dict	=	MyDict()	my_dict['name']	=	'Alice'	print(my_dict)	Output:{‘NAME’:	‘Alice’}UserListUserList	is	a	wrapper	around	the	standard	list	that	allows	you	to	modify	list	behavior	when	subclassing.from	collections	import	UserList#	Example:	Custom	list
that	prevents	adding	negative	numbers	class	MyList(UserList):	def	append(self,	item):	if	item	>=	0:	super().append(item)	my_list	=	MyList()	my_list.append(10)	my_list.append(-5)	print(my_list)	Output:[10]UserStringUserString	is	a	wrapper	around	the	standard	string	(str)	that	makes	it	easier	to	subclass	and	extend	string	behavior.from	collections
import	UserString#	Example:	Custom	string	that	converts	to	lowercase	class	MyString(UserString):	def	__init__(self,	data):	super().__init__(data.lower())	my_string	=	MyString("HELLO	WORLD")	print(my_string)	Output:hello	worldThese	classes	make	it	easier	to	create	custom	objects	that	behave	like	built-in	data	types	but	with	added
functionality.DictionaryDictionaries	are	used	to	store	key-value	pairs.	To	understand	better,	think	of	a	phone	directory	where	hundreds	and	thousands	of	names	and	their	corresponding	numbers	have	been	added.	Now	the	constant	values	here	are	Name	and	the	Phone	Numbers	which	are	called	as	the	keys.	And	the	various	names	and	phone	numbers
are	the	values	that	have	been	fed	to	the	keys.	If	you	access	the	values	of	the	keys,	you	will	obtain	all	the	names	and	phone	numbers.	So	that	is	what	a	key-value	pair	is.	And	in	Python,	this	structure	is	stored	using	Dictionaries.	Let	us	understand	this	better	with	an	example	program.Creating	a	DictionaryDictionaries	can	be	created	using	the	flower
braces	or	using	the	dict()	function.	You	need	to	add	the	key-value	pairs	whenever	you	work	with	dictionaries.	my_dict	=	{}	#empty	dictionary	print(my_dict)	my_dict	=	{1:	'Python',	2:	'Java'}	#dictionary	with	elements	print(my_dict)	Output:	{}	{1:	‘Python’,	2:	‘Java’}Changing	and	Adding	key,	value	pairsTo	change	the	values	of	the	dictionary,	you
need	to	do	that	using	the	keys.	So,	you	firstly	access	the	key	and	then	change	the	value	accordingly.	To	add	values,	you	simply	just	add	another	key-value	pair	as	shown	below.	my_dict	=	{'First':	'Python',	'Second':	'Java'}	print(my_dict)	my_dict['Second']	=	'C++'	#changing	element	print(my_dict)	my_dict['Third']	=	'Ruby'	#adding	key-value	pair
print(my_dict)	Output:	{‘First’:	‘Python’,	‘Second’:	‘Java’}	{‘First’:	‘Python’,	‘Second’:	‘C++’}	{‘First’:	‘Python’,	‘Second’:	‘C++’,	‘Third’:	‘Ruby’}Deleting	key,	value	pairsTo	delete	the	values,	you	use	the	pop()	function	which	returns	the	value	that	has	been	deleted.	To	retrieve	the	key-value	pair,	you	use	the	popitem()	function	which	returns	a	tuple	of
the	key	and	value.	To	clear	the	entire	dictionary,	you	use	the	clear()	function.	my_dict	=	{'First':	'Python',	'Second':	'Java',	'Third':	'Ruby'}	a	=	my_dict.pop('Third')	#pop	element	print('Value:',	a)	print('Dictionary:',	my_dict)	b	=	my_dict.popitem()	#pop	the	key-value	pair	print('Key,	value	pair:',	b)	print('Dictionary',	my_dict)	my_dict.clear()	#empty
dictionary	print('n',	my_dict)	Output:Value:	Ruby	Dictionary:	{‘First’:	‘Python’,	‘Second’:	‘Java’}Key,	value	pair:	(‘Second’,	‘Java’)	Dictionary	{‘First’:	‘Python’}{}Accessing	ElementsYou	can	access	elements	using	the	keys	only.	You	can	use	either	the	get()	function	or	just	pass	the	key	values	and	you	will	be	retrieving	the	values.	my_dict	=	{'First':
'Python',	'Second':	'Java'}	print(my_dict['First'])	#access	elements	using	keys	print(my_dict.get('Second'))	Output:	Python	JavaOther	FunctionsYou	have	different	functions	which	return	to	us	the	keys	or	the	values	of	the	key-value	pair	accordingly	to	the	keys(),	values(),	items()	functions	accordingly.	my_dict	=	{'First':	'Python',	'Second':	'Java',	'Third':
'Ruby'}	print(my_dict.keys())	#get	keys	print(my_dict.values())	#get	values	print(my_dict.items())	#get	key-value	pairs	print(my_dict.get('First'))	Output:	dict_keys([‘First’,	‘Second’,	‘Third’])	dict_values([‘Python’,	‘Java’,	‘Ruby’])	dict_items([(‘First’,	‘Python’),	(‘Second’,	‘Java’),	(‘Third’,	‘Ruby’)])	PythonTupleTuples	are	the	same	as	lists	are	with	the
exception	that	the	data	once	entered	into	the	tuple	cannot	be	changed	no	matter	what.	The	only	exception	is	when	the	data	inside	the	tuple	is	mutable,	only	then	the	tuple	data	can	be	changed.	The	example	program	will	help	you	understand	better.Creating	a	TupleYou	create	a	tuple	using	parenthesis	or	using	the	tuple()	function.	my_tuple	=	(1,	2,	3)
#create	tuple	print(my_tuple)	Output:	(1,	2,	3)Accessing	ElementsAccessing	elements	is	the	same	as	it	is	for	accessing	values	in	lists.	my_tuple2	=	(1,	2,	3,	'edureka')	#access	elements	for	x	in	my_tuple2:	print(x)	print(my_tuple2)	print(my_tuple2[0])	print(my_tuple2[:])	print(my_tuple2[3][4])	Output:	1	2	3	edureka	(1,	2,	3,	‘edureka’)	1	(1,	2,	3,
‘edureka’)	eAppending	ElementsTo	append	the	values,	you	use	the	‘+’	operator	which	will	take	another	tuple	to	be	appended	to	it.	my_tuple	=	(1,	2,	3)	my_tuple	=	my_tuple	+	(4,	5,	6)	#add	elements	print(my_tuple)	Output:	(1,	2,	3,	4,	5,	6)Other	FunctionsThese	functions	are	the	same	as	they	are	for	lists.	my_tuple	=	(1,	2,	3,	['hindi',	'python'])
my_tuple[3][0]	=	'english'	print(my_tuple)	print(my_tuple.count(2))	print(my_tuple.index(['english',	'python']))	Output:	(1,	2,	3,	[‘english’,	‘python’])	1	3SetsSets	are	a	collection	of	unordered	elements	that	are	unique.	Meaning	that	even	if	the	data	is	repeated	more	than	one	time,	it	would	be	entered	into	the	set	only	once.	It	resembles	the	sets	that	you
have	learnt	in	arithmetic.	The	operations	also	are	the	same	as	is	with	the	arithmetic	sets.	An	example	program	would	help	you	understand	better.Creating	a	setSets	are	created	using	the	flower	braces	but	instead	of	adding	key-value	pairs,	you	just	pass	values	to	it.	my_set	=	{1,	2,	3,	4,	5,	5,	5}	#create	set	print(my_set)	Output:	{1,	2,	3,	4,	5}Adding
elementsTo	add	elements,	you	use	the	add()	function	and	pass	the	value	to	it.	my_set	=	{1,	2,	3}	my_set.add(4)	#add	element	to	set	print(my_set)	Output:	{1,	2,	3,	4}Operations	in	setsThe	different	operations	on	set	such	as	union,	intersection	and	so	on	are	shown	below.	my_set	=	{1,	2,	3,	4}	my_set_2	=	{3,	4,	5,	6}	print(my_set.union(my_set_2),	'------
----',	my_set	|	my_set_2)	print(my_set.intersection(my_set_2),	'----------',	my_set	&	my_set_2)	print(my_set.difference(my_set_2),	'----------',	my_set	-	my_set_2)	print(my_set.symmetric_difference(my_set_2),	'----------',	my_set	^	my_set_2)	my_set.clear()	print(my_set)	The	union()	function	combines	the	data	present	in	both	sets.	The	intersection()	function	finds
the	data	present	in	both	sets	only.	The	difference()	function	deletes	the	data	present	in	both	and	outputs	data	present	only	in	the	set	passed.	The	symmetric_difference()	does	the	same	as	the	difference()	function	but	outputs	the	data	which	is	remaining	in	both	sets.Output:	{1,	2,	3,	4,	5,	6}	———-	{1,	2,	3,	4,	5,	6}	{3,	4}	———-	{3,	4}	{1,	2}	———-	{1,
2}	{1,	2,	5,	6}	———-	{1,	2,	5,	6}	set()Frozen	SetA	frozen	set	in	Python	is	an	immutable	version	of	a	regular	set,	meaning	its	elements	cannot	be	changed	after	creation	(no	adding,	removing,	or	modifying	elements).	It’s	useful	when	you	need	a	set	that	should	not	be	altered,	like	using	it	as	a	key	in	a	dictionary.Creating	a	Frozen	Set:frozen	=
frozenset([1,	2,	3,	4])print(frozen)Adding	Elements:You	cannot	add	elements	to	a	frozen	set	after	its	creation	since	it’s	immutable.Operations	on	Frozen	Sets:You	can	still	perform	set	operations	like:Union:	frozen1	|	frozen2	Intersection:	frozen1	&	frozen2	Difference:	frozen1	–	frozen2	Symmetric	Difference:	frozen1	^	frozen2Example:frozen1	=
frozenset([1,	2,	3])frozen2	=	frozenset([3,	4,	5])#	Unionprint(frozen1	|	frozen2)	Output:	frozenset({1,	2,	3,	4,	5})#	Intersectionprint(frozen1	&	frozen2)	Output:	frozenset({3})Now	that	you	have	understood	the	built-in	Data	Structures,	let’s	get	started	with	the	user-defined	Data	Structures.	User-defined	Data	Structures,	the	name	itself	suggests	that
users	define	how	the	Data	Structure	would	work	and	define	functions	in	it.	This	gives	the	user	whole	control	over	how	the	data	needs	to	be	saved,	manipulated	and	so	forth.Explore	top	Python	interview	questions	covering	topics	like	data	structures,	algorithms,	OOP	concepts,	and	problem-solving	techniques.	Master	key	Python	skills	to	ace	your
interview	and	secure	your	next	developer	role.Let	us	move	ahead	and	study	the	most	prominent	Data	Structures	in	most	of	the	programming	languages.Arrays	vs.	ListsArrays	and	lists	are	the	same	structure	with	one	difference.	Lists	allow	heterogeneous	data	element	storage	whereas	Arrays	allow	only	homogenous	elements	to	be	stored	within
them.StackStacks	are	linear	Data	Structures	which	are	based	on	the	principle	of	Last-In-First-Out	(LIFO)	where	data	which	is	entered	last	will	be	the	first	to	get	accessed.	It	is	built	using	the	array	structure	and	has	operations	namely,	pushing	(adding)	elements,	popping	(deleting)	elements	and	accessing	elements	only	from	one	point	in	the	stack
called	as	the	TOP.	This	TOP	is	the	pointer	to	the	current	position	of	the	stack.	Stacks	are	prominently	used	in	applications	such	as	Recursive	Programming,	reversing	words,	undo	mechanisms	in	word	editors	and	so	forth.QueueA	queue	is	also	a	linear	data	structure	which	is	based	on	the	principle	of	First-In-First-Out	(FIFO)	where	the	data	entered
first	will	be	accessed	first.	It	is	built	using	the	array	structure	and	has	operations	which	can	be	performed	from	both	ends	of	the	Queue,	that	is,	head-tail	or	front-back.	Operations	such	as	adding	and	deleting	elements	are	called	En-Queue	and	De-Queue	and	accessing	the	elements	can	be	performed.	Queues	are	used	as	Network	Buffers	for	traffic
congestion	management,	used	in	Operating	Systems	for	Job	Scheduling	and	many	more.TreeTrees	are	non-linear	Data	Structures	which	have	root	and	nodes.	The	root	is	the	node	from	where	the	data	originates	and	the	nodes	are	the	other	data	points	that	are	available	to	us.	The	node	that	precedes	is	the	parent	and	the	node	after	is	called	the	child.
There	are	levels	a	tree	has	to	show	the	depth	of	information.	The	last	nodes	are	called	the	leaves.	Trees	create	a	hierarchy	which	can	be	used	in	a	lot	of	real-world	applications	such	as	the	HTML	pages	use	trees	to	distinguish	which	tag	comes	under	which	block.	It	is	also	efficient	in	searching	purposes	and	much	more.Linked	ListLinked	lists	are	linear
Data	Structures	which	are	not	stored	consequently	but	are	linked	with	each	other	using	pointers.	The	node	of	a	linked	list	is	composed	of	data	and	a	pointer	called	next.	These	structures	are	most	widely	used	in	image	viewing	applications,	music	player	applications	and	so	forth.GraphGraphs	are	used	to	store	data	collection	of	points	called	vertices
(nodes)	and	edges	(edges).	Graphs	can	be	called	as	the	most	accurate	representation	of	a	real-world	map.	They	are	used	to	find	the	various	cost-to-distance	between	the	various	data	points	called	as	the	nodes	and	hence	find	the	least	path.	Many	applications	such	as	Google	Maps,	Uber,	and	many	more	use	Graphs	to	find	the	least	distance	and	increase
profits	in	the	best	ways.HashMapsHashMaps	are	the	same	as	what	dictionaries	are	in	Python.	They	can	be	used	to	implement	applications	such	as	phonebooks,	populate	data	according	to	the	lists	and	much	more.That	wraps	up	all	the	prominent	Data	Structures	in	Python.	I	hope	you	have	understood	built-in	as	well	as	the	user-defined	Data	Structures
that	we	have	in	Python	and	why	they	are	important.Now	that	you	have	understood	the	Data	Structures	in	Python,	check	out	the	Data	Science	with	Python	Course	Online	available	on	Edureka,	a	trusted	online	learning	company	with	a	network	of	more	than	250,000	satisfied	learners	spread	across	the	globe.Edureka’s	Python	Programming	Certification
Training	course	is	designed	for	students	and	professionals	who	want	to	be	a	Master	in	Python	programming.	The	course	is	designed	to	give	you	a	head	start	into	Python	programming	and	train	you	for	both	core	and	advanced	concepts.Stay	ahead	of	the	curve	in	technology	with	This	Post	Graduate	Program	in	AI	and	Machine	Learning	in	partnership
with	E&ICT	Academy,	National	Institute	of	Technology,	Warangal.	This	Artificial	intelligence	course	is	curated	to	deliver	the	best	results.Got	a	question	for	us?	Please	mention	it	in	the	comments	section	of	this	“Data	Structures	You	Need	to	Learn	with	Python”	blog	and	we	will	get	back	to	you	as	soon	as	possible.	Linear	Data	Structures	are	a	type	of
data	structure	in	computer	science	where	data	elements	are	arranged	sequentially	or	linearly.	Each	element	has	a	previous	and	next	adjacent,	except	for	the	first	and	last	elements.	Sequential	Organization:	In	linear	data	structures,	data	elements	are	arranged	sequentially,	one	after	the	other.	Each	element	has	a	unique	predecessor	(except	for	the
first	element)	and	a	unique	successor	(except	for	the	last	element)Order	Preservation:	The	order	in	which	elements	are	added	to	the	data	structure	is	preserved.	This	means	that	the	first	element	added	will	be	the	first	one	to	be	accessed	or	removed,	and	the	last	element	added	will	be	the	last	one	to	be	accessed	or	removed.Fixed	or	Dynamic	Size:
Linear	data	structures	can	have	either	fixed	or	dynamic	sizes.	Arrays	typically	have	a	fixed	size	when	they	are	created,	while	other	structures	like	linked	lists,	stacks,	and	queues	can	dynamically	grow	or	shrink	as	elements	are	added	or	removed.Efficient	Access:	Accessing	elements	within	a	linear	data	structure	is	typically	efficient.	For	example,
arrays	offer	constant-time	access	to	elements	using	their	index.	Linear	data	structures	are	commonly	used	for	organising	and	manipulating	data	in	a	sequential	fashion.	Some	of	the	most	common	linear	data	structures	include:	Arrays:	A	collection	of	elements	stored	in	contiguous	memory	locations.Linked	Lists:	A	collection	of	nodes,	each	containing
an	element	and	a	reference	to	the	next	node.Stacks:	A	collection	of	elements	with	Last-In-First-Out	(LIFO)	order.Queues:	A	collection	of	elements	with	First-In-First-Out	(FIFO)	order.1.	Array	An	array	is	a	collection	of	items	of	same	data	type	stored	at	contiguous	memory	locations.	Array	Characteristics	of	Array	Data	Structure:	Homogeneous
Elements:	All	elements	within	an	array	must	be	of	the	same	data	type.Contiguous	Memory	Allocation:	In	most	programming	languages,	elements	in	an	array	are	stored	in	contiguous	(adjacent)	memory	locations.	Zero-Based	Indexing:	In	many	programming	languages,	arrays	use	zero-based	indexing,	which	means	that	the	first	element	is	accessed	with
an	index	of	0,	the	second	with	an	index	of	1,	and	so	on.	Random	Access:	Arrays	provide	constant-time	(O(1))	access	to	elements.	This	means	that	regardless	of	the	size	of	the	array,	it	takes	the	same	amount	of	time	to	access	any	element	based	on	its	index.Types	of	arrays:	One-Dimensional	Array:	This	is	the	simplest	form	of	an	array,	which	consists	of	a
single	row	of	elements,	all	of	the	same	data	type.	Elements	in	a	1D	array	are	accessed	using	a	single	index.One-Dimensional	ArrayTwo-Dimensional	Array:	A	two-dimensional	array,	often	referred	to	as	a	matrix	or	2D	array,	is	an	array	of	arrays.	It	consists	of	rows	and	columns,	forming	a	grid-like	structure.	Elements	in	a	2D	array	are	accessed	using
two	indices,	one	for	the	row	and	one	for	the	column.	Two-Dimensional	Array:Multi-Dimensional	Array:	Arrays	can	have	more	than	two	dimensions,	leading	to	multi-dimensional	arrays.	These	are	used	when	data	needs	to	be	organized	in	a	multi-dimensional	grid.	Multi-Dimensional	Array	Types	of	Array	operations:Accessing	Elements:	Accessing	a
specific	element	in	an	array	by	its	index	is	a	constant-time	operation.	It	has	a	time	complexity	of	O(1).Insertion:	Appending	an	element	to	the	end	of	an	array	is	usually	a	constant-time	operation,	O(1)	but	insertion	at	the	beginning	or	any	specific	index	takes	O(n)	time	because	it	requires	shifting	all	of	the	elements.Deletion:	Same	as	insertion,	deleting
the	last	element	is	a	constant-time	operation,	O(1)	but	deletion	of	element	at	the	beginning	or	any	specific	index	takes	O(n)	time	because	it	requires	shifting	all	of	the	elements.Searching:	Linear	Search	takes	O(n)	time	which	is	useful	for	unsorted	data	and	Binary	Search	takes	O(logn)	time	which	is	useful	for	sorted	data.2.	Linked	List	A	Linked	List	is	a
linear	data	structure	which	looks	like	a	chain	of	nodes,	where	each	node	contains	a	data	field	and	a	reference(link)	to	the	next	node	in	the	list.	Unlike	Arrays,	Linked	List	elements	are	not	stored	at	a	contiguous	location.	Common	Features	of	Linked	List:Node:	Each	element	in	a	linked	list	is	represented	by	a	node,	which	contains	two	components:Data:
The	actual	data	or	value	associated	with	the	element.Next	Pointer(or	Link):	A	reference	or	pointer	to	the	next	node	in	the	linked	list.Head:	The	first	node	in	a	linked	list	is	called	the	"head."	It	serves	as	the	starting	point	for	traversing	the	list.Tail:	The	last	node	in	a	linked	list	is	called	the	"tail."	Types	of	Linked	Lists:Singly	Linked	List:	In	this	type	of



linked	list,	every	node	stores	the	address	or	reference	of	the	next	node	in	the	list	and	the	last	node	has	the	next	address	or	reference	as	NULL.	For	example:	1->2->3->4->NULL		Singly	Linked	List	Doubly	Linked	Lists:	In	a	doubly	linked	list,	each	node	has	two	pointers:	one	pointing	to	the	next	node	and	one	pointing	to	the	previous	node.	This
bidirectional	structure	allows	for	efficient	traversal	in	both	directions.	Doubly	Linked	Lists	Circular	Linked	Lists:	A	circular	linked	list	is	a	type	of	linked	list	in	which	the	first	and	the	last	nodes	are	also	connected	to	each	other	to	form	a	circle,	there	is	no	NULL	at	the	end.	Circular	Linked	Lists	Types	of	Linked	List	operations:Accessing	Elements:
Accessing	a	specific	element	in	a	linked	list	takes	O(n)	time	since	nodes	are	stored	in	non	conitgous	locations	so	random	access	if	not	possible.Searching:	Searching	of	a	node	in	linked	list	takes	O(n)	time	as	whole	list	needs	to	travesed	in	worst	case.Insertion:	Insertion	takes	O(1)	time	if	we	are	at	the	position	where	we	have	to	insert	an
element.Deletion:	Deletion	takes	O(1)	time	if	we	know	the	position	of	the	element	to	be	deleted.3.	Stack	Data	StructureA	stack	is	a	linear	data	structure	that	follows	the	Last-In-First-Out	(LIFO)	principle,	meaning	that	the	last	element	added	to	the	stack	is	the	first	one	to	be	removed.	Stack	Data	structure	Types	of	Stacks:Fixed	Size	Stack:	As	the	name
suggests,	a	fixed	size	stack	has	a	fixed	size	and	cannot	grow	or	shrink	dynamically.	If	the	stack	is	full	and	an	attempt	is	made	to	add	an	element	to	it,	an	overflow	error	occurs.	If	the	stack	is	empty	and	an	attempt	is	made	to	remove	an	element	from	it,	an	underflow	error	occurs.Dynamic	Size	Stack:	A	dynamic	size	stack	can	grow	or	shrink	dynamically.
When	the	stack	is	full,	it	automatically	increases	its	size	to	accommodate	the	new	element,	and	when	the	stack	is	empty,	it	decreases	its	size.	This	type	of	stack	is	implemented	using	a	linked	list,	as	it	allows	for	easy	resizing	of	the	stack.Stack	Operations:push():	When	this	operation	is	performed,	an	element	is	inserted	into	the	stack.pop():	When	this
operation	is	performed,	an	element	is	removed	from	the	top	of	the	stack	and	is	returned.top():	This	operation	will	return	the	last	inserted	element	that	is	at	the	top	without	removing	it.size():	This	operation	will	return	the	size	of	the	stack	i.e.	the	total	number	of	elements	present	in	the	stack.isEmpty():	This	operation	indicates	whether	the	stack	is
empty	or	not.4.	Queue	Data	StructureA	queue	is	a	linear	data	structure	that	follows	the	First-In-First-Out	(FIFO)	principle.	In	a	queue,	the	first	element	added	is	the	first	one	to	be	removed.	Queue	Data	Structure	Types	of	Queue:Input	Restricted	Queue:	This	is	a	simple	queue.	In	this	type	of	queue,	the	input	can	be	taken	from	only	one	end	but	deletion
can	be	done	from	any	of	the	ends.Output	Restricted	Queue:	This	is	also	a	simple	queue.	In	this	type	of	queue,	the	input	can	be	taken	from	both	ends	but	deletion	can	be	done	from	only	one	end.Circular	Queue:	This	is	a	special	type	of	queue	where	the	last	position	is	connected	back	to	the	first	position.	Here	also	the	operations	are	performed	in	FIFO
order.	To	know	more	refer	this.Double-Ended	Queue	(Dequeue):	In	a	double-ended	queue	the	insertion	and	deletion	operations,	both	can	be	performed	from	both	ends.	To	know	more	refer	this.Priority	Queue:	A	priority	queue	is	a	special	queue	where	the	elements	are	accessed	based	on	the	priority	assigned	to	them.	To	know	more	refer	this.Queue
Operations:Enqueue():	Adds	(or	stores)	an	element	to	the	end	of	the	queue..Dequeue():	Removal	of	elements	from	the	queue.Peek()	or	front():	Acquires	the	data	element	available	at	the	front	node	of	the	queue	without	deleting	it.rear():	This	operation	returns	the	element	at	the	rear	end	without	removing	it.isFull():	Validates	if	the	queue	is	full.isNull():
Checks	if	the	queue	is	empty.Advantages	of	Linear	Data	StructuresEfficient	data	access:	Elements	can	be	easily	accessed	by	their	position	in	the	sequence.Dynamic	sizing:	Linear	data	structures	can	dynamically	adjust	their	size	as	elements	are	added	or	removed.Ease	of	implementation:	Linear	data	structures	can	be	easily	implemented	using	arrays
or	linked	lists.Versatility:	Linear	data	structures	can	be	used	in	various	applications,	such	as	searching,	sorting,	and	manipulation	of	data.Simple	algorithms:	Many	algorithms	used	in	linear	data	structures	are	simple	and	straightforward.Disadvantages	of	Linear	Data	StructuresLimited	data	access:	Accessing	elements	not	stored	at	the	end	or	the
beginning	of	the	sequence	can	be	time-consuming.Memory	overhead:	Maintaining	the	links	between	elements	in	linked	lists	and	pointers	in	stacks	and	queues	can	consume	additional	memory.Complex	algorithms:	Some	algorithms	used	in	linear	data	structures,	such	as	searching	and	sorting,	can	be	complex	and	time-consuming.Inefficient	use	of
memory:	Linear	data	structures	can	result	in	inefficient	use	of	memory	if	there	are	gaps	in	the	memory	allocation.Unsuitable	for	certain	operations:	Linear	data	structures	may	not	be	suitable	for	operations	that	require	constant	random	access	to	elements,	such	as	searching	for	an	element	in	a	large	dataset.


