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Computer	Organization	and	Architecture	UNIT	1	INTRODUCTION	TO	COMPUTERS	Computer:	An	Introduction	1.1	Introduction	1.2	What	Is	Computer	1.3	Von	Neumann	Architecture	1.4	Generation	Of	Computer	1.4.1	Mechanical	Computers	(1623-1945)	1.4.2	Pascaline	1.4.3	Difference	Engine	1.4.4	Analytical	Engine	1.4.5	Harvard	Mark	I	And	The
Bug	1.4.6	First	Generation	Computers	(1937-1953)	1.4.7	Second	Generation	Computers	(1954-1962)	1.4.8	Third	Generation	Computers	(1963-1972)	1.4.9	Fourth	Generation	Computers	(1972-1984)	1.4.10	Fifth	Generation	Computers	(1984-1990)	1.4.11	Later	Generations	(1990	-)	1.5	Classification	Of	Computers	1.5.1	Micro	Computer	1.5.2	Mini
Computer	1.5.3	Mainframe	Computer	1.5.4	Super	Computer	1.1	Introduction	Computer	is	one	of	the	major	components	of	an	Information	Technology	network	and	gaining	increasing	popularity.	Today,	computer	technology	has	permeated	every	sphere	of	existence	of	modern	man.	In	this	block,	we	will	introduce	you	to	the	computer	hardware
technology,	how	does	it	work	and	what	is	it?	In	addition	we	will	also	try	to	discuss	some	of	the	terminology	closely	linked	with	Information	Technology	and	computers.	1.2	WHAT	IS	COMPUTER?	Computer	is	defined	in	the	Oxford	dictionary	as	“An	automatic	electronic	apparatus	for	making	calculations	or	controlling	operations	that	are	expressible	in
numerical	or	9.	Paper	Name:	Computer	Organization	and	Architecture	logical	terms”	.	A	device	that	accepts	data1,	processes	the	data	according	to	the	instructions	provided	by	the	user,	and	finally	returns	the	results	to	the	user	and	usually	consists	of	input,	output,	storage,	arithmetic,	logic,	and	control	units.	The	computer	can	store	and	manipulate
large	quantities	of	data	at	very	high	speed	The	basic	function	performed	by	a	computer	is	the	execution	of	a	program.	A	program	is	a	sequence	of	instructions,	which	operates	on	data	to	perform	certain	tasks.	In	modern	digital	computers	data	is	represented	in	binary	form	by	using	two	symbols	0	and	1,	which	are	called	binary	digits	or	bits.	But	the
data	which	we	deal	with	consists	of	numeric	data	and	characters	such	as	decimal	digits	0	to	9,	alphabets	A	to	Z,	arithmetic	operators	(e.g.	+,	-,	etc.),	relations	operators	(e.g.	=,	>,	etc.),	and	many	other	special	characters	(e.g.;,@,{,],etc.).	Thus,	collection	of	eight	bits	is	called	a	byte.	Thus,	one	byte	is	used	to	represent	one	character	internally.	Most
computers	use	two	bytes	or	four	bytes	to	represent	numbers	(positive	and	negative)	internally.	Another	term,	which	is	commonly	used	in	computer,	is	a	Word.	A	word	may	be	defined	as	a	unit	of	information,	which	a	computer	can	process,	or	transfer	at	a	time.	A	word,	generally,	is	equal	to	the	number	of	bits	transferred	between	the	central	processing
unit	and	the	main	memory	in	a	single	step.	It	ma	also	be	defined	as	the	basic	unit	of	storage	of	integer	data	in	a	computer.	Normally,	a	word	may	be	equal	to	8,	16,	32	or	64	bits	.The	terms	like	32	bit	computer,	64	bit	computers	etc.	basically	points	out	the	word	size	of	the	computer.	1.3	VON	NEUMANN	ARCHITECTURE	Most	of	today’s	computer
designs	are	based	on	concepts	developed	by	John	von	Neumann	referred	to	as	the	VON	NEUMANN	ARCHITECTURE.	Von	Neumann	proposed	that	there	should	be	a	unit	performing	arithmetic	and	logical	operation	on	the	data.	This	unit	is	termed	as	Arithmetic	Logic	(ALU).	One	of	the	ways	to	provide	instruction	to	such	computer	will	be	by	connecting
various	logic	components	in	such	a	fashion,	that	they	produce	the	desired	output	for	a	given	set	of	inputs.	The	process	of	connecting	various	logic	components	in	specific	configuration	to	achieve	desired	results	is	called	Programming.	This	programming	since	is	achieved	by	providing	instruction	within	hardware	by	various	connections	is	termed	as
Hardwired.	But	this	is	a	very	inflexible	process	of	programming.	Let	us	have	a	general	configuration	for	arithmetic	and	logical	functions.	In	such	a	case	there	is	a	need	of	a	control	signal,	which	directs	the	ALU	to	performed	a	specific	arithmetic	or	logic	function	on	the	data.	Therefore,	in	such	a	system,	by	changing	the	control	signal	the	desired
function	can	be	performed	on	data.	1	Representation	of	facts,	concepts,	or	instructions	in	a	formalized	manner	suitable	for	communication,	interpretation,	or	processing	by	humans	or	by	automatic	means.	Any	representations	such	as	characters	or	analog	quantities	to	which	meaning	is	or	might	be	assigned	10.	Paper	Name:	Computer	Organization
and	Architecture	Any	operation,	which	needs	to	be	performed	on	the	data,	then	can	be	obtained	by	providing	a	set	of	control	signals.	This,	for	a	new	operation	one	only	needs	to	change	the	set	of	control	signals.	But,	how	can	these	control	signals	by	supplied?	Let	us	try	to	answer	this	from	the	definition	of	a	program.	A	program	consists	of	a	sequence
of	steps.	Each	of	these	steps,	require	certain	arithmetic	or	logical	or	input/output	operation	to	be	performed	on	data.	Therefore,	each	step	may	require	a	new	set	of	control	signals.	Is	it	possible	for	us	to	provide	a	unique	code	for	each	set	of	control	signals?	Well	the	answer	is	yes.	But	what	do	we	do	with	these	codes?	What	about	adding	a	hardware
segment,	which	accepts	a	code	and	generates	termed	as	Control	Unit	(CU).	This,	a	program	now	consists	of	a	sequence	of	codes.	This	machine	is	quite	flexible,	as	we	only	need	to	provide	a	new	sequence	of	codes	for	a	new	program.	Each	code	is,	in	effect,	and	instruction,	for	the	computer	The	hardware	interprets	each	of	these	instructions	and
generates	respective	control	signals,	The	Arithmetic	Logic	Unit	(ALU)	and	the	Control	Unit	(CU)	together	are	termed	as	the	Central	Processing	Unit	(CPU).	The	CPU	is	the	moist	important	component	of	a	computer’s	hardware.	The	ALU	performs	the	arithmetic	operations	such	as	addition,	subtraction,	multiplication	and	division,	and	the	logical
operations	such	as:	“Is	A	=B?”	(Where	A	and	B	are	both	numeric	or	alphanumeric	data),	“Is	a	given	character	equal	to	M	(for	male)	or	F	(for	female)?”	The	control	unit	interprets	instructions	and	produces	the	respective	control	signals.	All	the	arithmetic	and	logical	Operations	are	performed	in	the	CPU	in	special	storage	areas	called	registers.	‘The
size	of	the	register	is	one	of	the	important	consideration	in	determining	the	processing	capabilities	of	the	CPU.	Register	size	refers	to	the	amount	of	information	that	can	be	held	in	a	register	at	a	time	for	processing.	The	larger	the	register	size,	the	faster	may	be	the	speed	o	processing.	A	CPU’s	processing	power	is	measured	in	Million	Instructions	Per
Second	(MIPS).	The	performance	of	the	CPU	was	measured	in	milliseconds	(one	thousand	of	a	second)	on	the	first	generation	computers,	in	microseconds	(one	millionth	of	a	second)	on	second-generation	computers,	and	is	expected	to	be	measured	in	Pico-seconds	(one	1000th	of	a	nano-second)	in	the	later	generations.	How	can	the	instruction	and
data	be	put	into	the	computers?	An	external	environment	supplies	the	instruction	and	data,	therefore,	an	input	module	is	needed.	The	main	responsibility	of	input	module	will	be	to	put	the	data	in	the	form	of	signals	that	can	be	recognized	by	the	system.	Similarly,	we	need	another	component,	which	will	report	the	results	in	the	results	in	proper	format
and	form.	This	component	is	called	output	module.	These	components	are	referred	together	as	input/output	(I/O)	components.	In	addition,	to	transfer	the	information,	the	computer	system	internally	needs	the	system	interconnections.	Most	common	input/output	devices	are	keyboard,	monitor	and	printer,	and	the	most	common	interconnection
structure	is	the	Bus	structure.	11.	Paper	Name:	Computer	Organization	and	Architecture	Are	these	two	components	sufficient	for	a	working	computer?	No,	because	input	devices	can	bring	instructions	or	data	only	sequentially	and	a	program	may	not	be	executed	sequentially	as	jump	instructions	are	normally	encountered	in	programming.	In	addition,
more	than	one	data	elements	may	be	required	at	a	time.	Therefore,	a	temporary	storage	area	is	needed	in	a	computer	to	store	temporarily	the	instructions	and	the	data.	This	component	is	referred	to	as	memory.	It	was	pointed	out	by	von-	Neumann	that	the	same	memory	can	be	used	or	storing	data	and	instructions.	In	such	cases	the	data	can	be
treated	as	data	on	which	processing	can	be	performed,	while	instructions	can	be	treated	as	data,	which	can	be	used	for	the	generation	of	control	signals.	The	memory	unit	stores	all	the	information	in	a	group	of	memory	cells,	also	called	memory	locations,	as	binary	digits.	Each	memory	location	has	a	unique	address	and	can	be	addressed
independently.	The	contents	of	the	desired	memory	locations	are	provided	to	the	central	processing	unit	by	referring	to	the	address	of	the	memory	location.	The	amount	of	information	that	can	be	held	in	the	main	memory	is	known	as	memory	capacity.	The	capacity	of	the	main	memory	s	measured	in	Kilo	Bytes	(KB)	or	Mega	Bytes	(B).	One-kilo	byte
stands	for	210	bytes,	which	are	1024	bytes	(or	approximately	1000	bytes).	A	mega	byte	stands	for	220	bytes,	which	is	approximately	little	over	one	million	bytes.	When	64-bit	CPU's	become	common	memory	will	start	to	be	spoken	about	in	terabytes,	petabytes,	and	exabytes.	•	One	kilobyte	equals	2	to	the	10th	power,	or	1,024	bytes.	•	One	megabyte
equals	2	to	the	20th	power,	or	1,048,576	bytes.	•	One	gigabyte	equals	2	to	the	30th	power,	or	1,073,741,824	bytes.	•	One	terabyte	equals	2	to	the	40th	power,	or	1,099511,627,776	bytes.	•	One	petabyte	equals	2	to	the	50th	power,	or	1,125,899,906,842,624	bytes.	•	One	exabyte	equals	2	to	the	60th	power,	or	1,152,921,504,606,846,976	bytes.	•	One
zettabyte	equals	2	to	the	70th	power,	or	1,180,591,620,717,411,303,424	•	One	yottabyte	equals	2	to	the	80th	power,	or	1,208,925,819,614,629,174,706,176	Note:	There	is	some	lack	of	standardization	on	these	terms	when	applied	to	memory	and	disk	capacity.	Memory	specifications	tend	to	adhere	to	the	definitions	above	whereas	disk	capacity
specifications	tend	to	simplify	things	to	the	10th	power	definitions	(kilo=103,	mega=106,	giga=109,	etc.)	in	order	to	produce	even	numbers.	Let	us	summarize	the	key	features	of	a	von	Neumann	machine.	•	The	hardware	of	the	von	Neumann	machine	consists	of	a	CPU,	which	includes	an	ALU	and	CU.	•	A	main	memory	system	•	An	Input/output
system	•	The	von	Neumann	machine	uses	stored	program	concept,	e.g.,	the	program	and	data	are	stored	in	the	same	memory	unit.	The	computers	prior	to	this	idea	used	12.	Paper	Name:	Computer	Organization	and	Architecture	to	store	programs	and	data	on	separate	memories.	Entering	and	modifying	these	programs	were	very	difficult	as	they	were
entered	manually	by	setting	switches	and	plugging	and	unplugging.	•	Each	location	of	the	memory	of	von	Neumann	machine	can	be	addressed	independently.	•	Execution	of	instructions	in	von	Neumann	machine	is	carried	out	in	a	sequential	fashion	(unless	explicitly	altered	by	the	program	itself)	from	one	instruction	to	the	next.	The	following	figure
shows	the	basic	structure	of	von	Neumann	machine.	A	von	Neumann	machine	has	only	a	single	path	between	the	main	memory	and	control	unit	(CU).	This	feature/	constraint	is	refereed	to	as	von	Neumann	bottleneck.	Several	other	architectures	have	been	suggested	for	modern	computers	von	Neumann	Machine	•	Attributed	to	John	von	Neumann	•
Treats	Program	and	Data	equally	•	One	port	to	Memory	.	Simplified	Hardware	•	"von	Neumann	Bottleneck"	(rate	at	which	data	and	program	can	get	into	the	CPU	is	limited	by	the	bandwidth	of	the	interconnect)	.	1.4	HISTORY	OF	COMPUTERS	Basic	information	about	the	technological	development	trends	in	computer	in	the	past	and	its	projections	in
the	future.	If	we	want	to	know	about	computers	completely	then	we	must	start	from	the	history	of	computers	and	look	into	the	details	of	various	technological	and	intellectual	breakthrough.	These	are	essential	to	give	us	the	feel	of	how	much	work	and	effort	has	been	done	to	get	the	computer	in	this	shape.	The	ancestors	of	modern	age	computer	were
the	mechanical	and	electro-mechanical	devices.	This	ancestry	can	be	traced	as	back	and	17th	century,	when	the	first	machine	capable	of	performing	four	mathematical	operations,	viz.	addition,	subtraction,	division	and	multiplication,	appeared.	1.4.1	MECHANICAL	COMPUTERS	1.4.1.1.	Pascaline:	13.	Paper	Name:	Computer	Organization	and
Architecture	Blaise	Pascal	made	the	very	first	attempt	towards	this	automatic	computing.	He	invented	a	device,	which	consisted	of	lots	of	gears	and	chains	and	used	to	perform	repeated	addition	and	subtractions.	This	device	was	called	Pascaline.	Later	many	attempts	were	made	in	this	direction;	we	will	not	go	in	the	details	of	these	mechanical
calculating	devices.	But	we	must	discuss	some	details	about	the	innovation	by	Charles	babbage,	the	grandfather	of	modern	computer.	He	designed	two	computers:	1.4.1.2.	THE	DIFFERENCE	ENGINE	It	was	based	on	the	mathematical	principle	of	finite	differences	and	was	used	to	solve	calculations	on	large	numbers	using	a	formula.	It	was	also	used
for	solving	the	polynomial	and	trigonometric	functions.	1.4.1.3.	THE	ANALYTICAL	ENGINE	BY	BABBAGE:	It	was	general	purpose	computing	device,	which	could	be	used	for	performing	any	mathematical	operation	automatically.	It	consisted	of	the	following	components:	•	THE	STORE:	A	mechanical	memory	unit	consisting	of	sets	of	counter	wheels.	•
THE	MILL:	An	arithmetic	unit,	which	is	capable	of	performing	the	four	basic	arithmetic	operations.	•	CARDS:	There	are	basically	two	types	of	cards:	o	Operation	Cards:	Selects	one	of	four	arithmetic	operating	by	activating	the	mill	to	perform	the	selected	function.	o	Variable	Cards:	Selects	the	memory	locations	to	be	used	by	the	mill	for	a	particular
operation	(i.e.	the	source	of	the	operands	and	the	destination	of	the	results).	•	OUTPUT:	Could	be	directed	to	a	printer	or	a	cardpunch	device.	Logical	Structure	of	Babbage’s	Analytical	Engine	Instructions	Results	The	Mill	performs	the	job	of	arithmetic	Store	used	as	memory	Output	or	Printer	or	punched	card.	Operational	Variable	Cards	Cards	14.
Paper	Name:	Computer	Organization	and	Architecture	The	basic	features	of	this	analytical	engine	were:	•	It	was	a	general	purpose	programmable	machine.	•	It	had	the	provision	of	automatic	sequence	control,	thus	enabling	programs	to	alter	its	sequence	of	operations.	•	The	provision	of	sign	checking	of	result	existed.	•	Mechanism	for	advancing	or
reversing	of	control	card	were	permitted	thus	enabling	exceution	of	any	desired	instruction.	In	other	words,	Babbage	had	deviced	a	conditional	and	branching	instructions,	the	babbage	machine	is	fundamentally	the	same	as	modern	computer.	Unfortunately	Babbage	work	could	not	be	completed.	But	as	a	tribute	to	Charles	Babbage	his	Analytical
Engine	was	completed	in	the	last	decade	and	is	now	on	display	at	the	science	Museum	at	London.	Next	notable	attempts	towards	computer	were	electromechanical	Zuse	used	electromechanical	relays	that	could	be	either	opened	or	closed	automatically.	Thus,	the	use	of	binary	digits,	rather	than	decimal	numbers	started.	1.4.1.4.	HARVARD	MARK	I
AND	THE	BUG	The	next	significant	effort	towards	devising	an	electromechanical	computer	was	made	at	the	harvard	University,	jointly	sponsered	by	IBM	and	the	Department	of	UN	Navy,	Howard	Aiken	of	Harvard	University	developed	a	system	called	Mark	I	in	1944.	Mark	I	was	decimal	machine.	Some	of	you	must	have	heard	a	term	call	“bug”.	It	is
mainly	used	to	indicate	errors	in	computer	programs.	This	term	was	coined,	when	one	day,	a	program	in	Mark	I	did	not	run	properly	due	to	a	short-circuiting	the	computer.	Since	then,	the	“bug”	has	been	linked	with	errors	or	problems	in	computer	programming.	The	process	of	eliminating	error	in	a	program	is	thus,	known	as	“debugging”.	The	basic
drawback	of	these	mechanical	and	elecromechanical	computers	were:	•	Friction/inertia	of	moving	components	had	limited	the	speed.	•	The	data	movement	using	gears	and	liner	was	quite	difficult	and	unreliable.	•	The	change	was	to	have	switching	and	storing	mechanism	with	no	moving	parts	and	then	the	electronic	switching	technique	“triode”
vacuum	tubes	were	used	and	hence	born	the	first	electronic	computer.	•	The	evolution	of	digital	computing	is	often	divided	into	generations.	Each	generation	is	characterized	by	dramatic	improvements	over	the	previous	generation	in	the	technology	used	to	build	computers,	the	internal	organization	of	computer	systems,	and	programming	languages.
Although	not	usually	associated	with	computer	generations,	there	has	been	a	steady	improvement	in	algorithms,	including	algorithms	used	in	computational	science.	The	following	history	has	been	organized	using	these	widely	recognized	generations	as	mileposts.	15.	Paper	Name:	Computer	Organization	and	Architecture	1.4.2	First	Generation
Electronic	Computers	(1937-1953)	Three	machines	have	been	promoted	at	various	times	as	the	first	electronic	computers.	These	machines	used	electronic	switches,	in	the	form	of	vacuum	tubes,	instead	of	electromechanical	relays.	In	principle	the	electronic	switches	would	be	more	reliable,	since	they	would	have	no	moving	parts	that	would	wear	out,
but	the	technology	was	still	new	at	that	time	and	the	tubes	were	comparable	to	relays	in	reliability.	Electronic	components	had	one	major	benefit,	however:	they	could	``open''	and	``close''	about	1,000	times	faster	than	mechanical	switches.	The	first	general	purpose	programmable	electronic	computer	was	the	Electronic	Numerical	Integrator	and
Computer	(ENIAC),	built	by	J.	Presper	Eckert	and	John	V.	Mauchly	at	the	University	of	Pennsylvania.	Eckert,	Mauchly,	and	John	von	Neumann,	a	consultant	to	the	ENIAC	project,	began	work	on	a	new	machine	before	ENIAC	was	finished.	The	main	contribution	of	EDVAC,	their	new	project,	was	the	notion	of	a	stored	program.	There	is	some
controversy	over	who	deserves	the	credit	for	this	idea,	but	none	over	how	important	the	idea	was	to	the	future	of	general	purpose	computers.	ENIAC	was	controlled	by	a	set	of	external	switches	and	dials;	to	change	the	program	required	physically	altering	the	settings	on	these	controls.	These	controls	also	limited	the	speed	of	the	internal	electronic
operations.	Through	the	use	of	a	memory	that	was	large	enough	to	hold	both	instructions	and	data,	and	using	the	program	stored	in	memory	to	control	the	order	of	arithmetic	operations,	EDVAC	was	able	to	run	orders	of	magnitude	faster	than	ENIAC.	By	storing	instructions	in	the	same	medium	as	data,	designers	could	concentrate	on	improving	the
internal	structure	of	the	machine	without	worrying	about	matching	it	to	the	speed	of	an	external	control.	The	trends,	which	were	encountered	during	the	era	of	first	generation	computer,	were:	•	The	first	generation	computer	control	was	centralized	in	a	single	CPU,	and	all	operations	required	a	direct	intervention	of	the	CPU.	•	Use	of	ferrite-core
main	memory	was	started	during	this	time.	•	Concepts	such	as	use	of	virtual	memory	and	index	register	(you	will	know	more	about	these	terms	in	advanced	courses).	•	Punched	cards	were	used	as	input	device.	•	Magnetic	tapes	and	magnetic	drums	were	used	as	secondary	memory.	•	Binary	code	or	machine	language	was	used	for	programming.	•
Towards	the	end	due	to	difficulties	encountered	in	use	of	machine	language	as	programming	language,	the	use	of	symbolic	language,	which	is	now	called	assembly	language,	started.	•	Assembler,	a	program,	which	translates	assembly	language	programs	to	machine	language,	was	made.	•	Computer	was	accessible	to	only	one	programmer	at	a	time
(single	user	environment).	16.	Paper	Name:	Computer	Organization	and	Architecture	•	Advent	of	Von-Neumann	Architecture.	1.4.3	Second	Generation	(1954-1962)	The	second	generation	saw	several	important	developments	at	all	levels	of	computer	system	design,	from	the	technology	used	to	build	the	basic	circuits	to	the	programming	languages
used	to	write	scientific	applications.	Electronic	switches	in	this	era	were	based	on	discrete	diode	and	transistor	technology	with	a	switching	time	of	approximately	0.3	microseconds.	The	first	machines	to	be	built	with	this	technology	include	TRADIC	at	Bell	Laboratories	in	1954	and	TX-0	at	MIT's	Lincoln	Laboratory.	Memory	technology	was	based	on
magnetic	cores	which	could	be	accessed	in	random	order,	as	opposed	to	mercury	delay	lines,	in	which	data	was	stored	as	an	acoustic	wave	that	passed	sequentially	through	the	medium	and	could	be	accessed	only	when	the	data	moved	by	the	I/O	interface.	During	this	second	generation	many	high	level	programming	languages	were	introduced,
including	FORTRAN	(1956),	ALGOL	(1958),	and	COBOL	(1959).	Important	commercial	machines	of	this	era	include	the	IBM	704	and	its	successors,	the	709	and	7094.	The	latter	introduced	I/O	processors	for	better	throughput	between	I/O	devices	and	main	memory.	The	second	generation	also	saw	the	first	two	supercomputers	designed	specifically
for	numeric	processing	in	scientific	applications.	The	term	``supercomputer''	is	generally	reserved	for	a	machine	that	is	an	order	of	magnitude	more	powerful	than	other	machines	of	its	era.	Two	machines	of	the	1950s	deserve	this	title.	The	Livermore	Atomic	Research	Computer	(LARC)	and	the	IBM	7030	(aka	Stretch)	were	early	examples	of	machines
that	overlapped	memory	operations	with	processor	operations	and	had	primitive	forms	of	parallel	processing	1.4.4	Third	Generation	(1963-1972)	The	third	generation	brought	huge	gains	in	computational	power.	Innovations	in	this	era	include	the	use	of	integrated	circuits,	or	ICs	(semiconductor	devices	with	several	transistors	built	into	one	physical
component),	semiconductor	memories	starting	to	be	used	instead	of	magnetic	cores,	microprogramming	as	a	technique	for	efficiently	designing	complex	processors,	the	coming	of	age	of	pipelining	and	other	forms	of	parallel	processing,	and	the	introduction	of	operating	systems	and	time-sharing.	The	first	ICs	were	based	on	small-scale	integration
(SSI)	circuits,	which	had	around	10	devices	per	circuit	(or	``chip''),	and	evolved	to	the	use	of	medium-scale	integrated	(MSI)	circuits,	which	had	up	to	100	devices	per	chip.	Multilayered	printed	circuits	were	developed	and	core	memory	was	replaced	by	faster,	solid	state	memories.	Computer	designers	began	to	take	advantage	of	parallelism	by	using
multiple	functional	units,	overlapping	CPU	and	I/O	operations,	and	pipelining	(internal	parallelism)	in	both	the	17.	Paper	Name:	Computer	Organization	and	Architecture	instruction	stream	and	the	data	stream.	The	SOLOMON	computer,	developed	by	Westinghouse	Corporation,	and	the	ILLIAC	IV,	jointly	developed	by	Burroughs,	the	Department	of
Defense	and	the	University	of	Illinois,	was	representative	of	the	first	parallel	computers.	1.4.5.	Fourth	Generation	(1972-1984)	The	next	generation	of	computer	systems	saw	the	use	of	large	scale	integration	(LSI	-	1000	devices	per	chip)	and	very	large	scale	integration	(VLSI	-	100,000	devices	per	chip)	in	the	construction	of	computing	elements.	At
this	scale	entire	processors	will	fit	onto	a	single	chip,	and	for	simple	systems	the	entire	computer	(processor,	main	memory,	and	I/O	controllers)	can	fit	on	one	chip.	Gate	delays	dropped	to	about	1ns	per	gate.	Semiconductor	memories	replaced	core	memories	as	the	main	memory	in	most	systems;	until	this	time	the	use	of	semiconductor	memory	in
most	systems	was	limited	to	registers	and	cache.	A	variety	of	parallel	architectures	began	to	appear;	however,	during	this	period	the	parallel	computing	efforts	were	of	a	mostly	experimental	nature	and	most	computational	science	was	carried	out	on	vector	processors.	Microcomputers	and	workstations	were	introduced	and	saw	wide	use	as
alternatives	to	time-shared	mainframe	computers.	Developments	in	software	include	very	high	level	languages	such	as	FP	(functional	programming)	and	Prolog	(programming	in	logic).	These	languages	tend	to	use	a	declarative	programming	style	as	opposed	to	the	imperative	style	of	Pascal,	C,	FORTRAN,	et	al.	In	a	declarative	style,	a	programmer
gives	a	mathematical	specification	of	what	should	be	computed,	leaving	many	details	of	how	it	should	be	computed	to	the	compiler	and/or	runtime	system.	These	languages	are	not	yet	in	wide	use,	but	are	very	promising	as	notations	for	programs	that	will	run	on	massively	parallel	computers	(systems	with	over	1,000	processors).	Compilers	for
established	languages	started	to	use	sophisticated	optimization	techniques	to	improve	code,	and	compilers	for	vector	processors	were	able	to	vectorize	simple	loops	(turn	loops	into	single	instructions	that	would	initiate	an	operation	over	an	entire	vector).	Two	important	events	marked	the	early	part	of	the	third	generation:	the	development	of	the	C
programming	language	and	the	UNIX	operating	system,	both	at	Bell	Labs.	In	1972,	Dennis	Ritchie,	seeking	to	meet	the	design	goals	of	CPL	and	generalize	Thompson's	B,	developed	the	C	language.	Thompson	and	Ritchie	then	used	C	to	write	a	version	of	UNIX	for	the	DEC	PDP-11.	This	C-based	UNIX	was	soon	ported	to	many	different	computers,
relieving	users	from	having	to	learn	a	new	operating	system	each	time	they	change	computer	hardware.	UNIX	or	a	derivative	of	UNIX	is	now	a	de	facto	standard	on	virtually	every	computer	system.	1.4.6	Fifth	Generation	(1984-1990)	18.	Paper	Name:	Computer	Organization	and	Architecture	The	development	of	the	next	generation	of	computer
systems	is	characterized	mainly	by	the	acceptance	of	parallel	processing.	Until	this	time	parallelism	was	limited	to	pipelining	and	vector	processing,	or	at	most	to	a	few	processors	sharing	jobs.	The	fifth	generation	saw	the	introduction	of	machines	with	hundreds	of	processors	that	could	all	be	working	on	different	parts	of	a	single	program.	Other	new
developments	were	the	widespread	use	of	computer	networks	and	the	increasing	use	of	single-user	workstations.	Prior	to	1985	large	scale	parallel	processing	was	viewed	as	a	research	goal,	but	two	systems	introduced	around	this	time	are	typical	of	the	first	commercial	products	to	be	based	on	parallel	processing.	The	Sequent	Balance	8000
connected	up	to	20	processors	to	a	single	shared	memory	module	(but	each	processor	had	its	own	local	cache).	The	machine	was	designed	to	compete	with	the	DEC	VAX-780	as	a	general	purpose	Unix	system,	with	each	processor	working	on	a	different	user's	job.	The	Intel	iPSC-1,	nicknamed	``the	hypercube'',	took	a	different	approach.	Instead	of
using	one	memory	module,	Intel	connected	each	processor	to	its	own	memory	and	used	a	network	interface	to	connect	processors.	This	distributed	memory	architecture	meant	memory	was	no	longer	a	bottleneck	and	large	systems	(using	more	processors)	could	be	built.	Toward	the	end	of	this	period	a	third	type	of	parallel	processor	was	introduced	to
the	market.	In	this	style	of	machine,	known	as	a	data-parallel	or	SIMD,	there	are	several	thousand	very	simple	processors.	All	processors	work	under	the	direction	of	a	single	control	unit;	i.e.	if	the	control	unit	says	``add	a	to	b''	then	all	processors	find	their	local	copy	of	a	and	add	it	to	their	local	copy	of	b.	Scientific	computing	in	this	period	was	still
dominated	by	vector	processing.	Most	manufacturers	of	vector	processors	introduced	parallel	models,	but	there	were	very	few	(two	to	eight)	processors	in	this	parallel	machines.	In	the	area	of	computer	networking,	both	wide	area	network	(WAN)	and	local	area	network	(LAN)	technology	developed	at	a	rapid	pace,	stimulating	a	transition	from	the
traditional	mainframe	computing	environment	toward	a	distributed	computing	environment	in	which	each	user	has	their	own	workstation	for	relatively	simple	tasks	(editing	and	compiling	programs,	reading	mail)	but	sharing	large,	expensive	resources	such	as	file	servers	and	supercomputers.	RISC	technology	(a	style	of	internal	organization	of	the
CPU)	and	plummeting	costs	for	RAM	brought	tremendous	gains	in	computational	power	of	relatively	low	cost	workstations	and	servers.	This	period	also	saw	a	marked	increase	in	both	the	quality	and	quantity	of	scientific	visualization.	1.4.7.	Sixth	Generation	(1990	-	)	This	generation	is	beginning	with	many	gains	in	parallel	computing,	both	in	the
hardware	area	and	in	improved	understanding	of	how	to	develop	algorithms	to	exploit	diverse,	massively	parallel	architectures.	Parallel	systems	now	complete	with	vector	19.	Paper	Name:	Computer	Organization	and	Architecture	processors	in	terms	of	total	computing	power	and	most	expect	parallel	systems	to	dominate	the	future.	Combinations	of
parallel/vector	architectures	are	well	established,	and	one	corporation	(Fujitsu)	has	announced	plans	to	build	a	system	with	over	200	of	its	high	end	vector	processors.	Workstation	technology	has	continued	to	improve,	with	processor	designs	now	using	a	combination	of	RISC,	pipelining,	and	parallel	processing.	As	a	result	it	is	now	possible	to
purchase	a	desktop	workstation	for	about	$30,000	that	has	the	same	overall	computing	power	(100	megaflops)	as	fourth	generation	supercomputers.	One	of	the	most	dramatic	changes	in	the	sixth	generation	will	be	the	explosive	growth	of	wide	area	networking.	Network	bandwidth	has	expanded	tremendously	in	the	last	few	years	and	will	continue	to
improve	for	the	next	several	years.	T1	transmission	rates	are	now	standard	for	regional	networks,	and	the	national	``backbone''	that	interconnects	regional	networks	uses	T3.	Networking	technology	is	becoming	more	widespread	than	its	original	strong	base	in	universities	and	government	laboratories	as	it	is	rapidly	finding	application	in	K-12
education,	community	networks	and	private	industry.	1.5	CLASSIFICATION	COMPUTERS	1.5.1	MICRO	COMPUTER	A	microcomputer’s	CPU	is	microprocessor.	The	microcomputer	originated	in	late	1970s.	the	first	microcomputers	were	built	around	8-bit	microprocessor	chips.	It	means	that	the	chip	can	retrieve	instructions/data	from	storage,
manipulate,	and	process	an	8-bit	data	at	a	time	or	we	can	say	that	the	chip	has	a	built-in	8-bit	data	transfer	path.	An	improvement	on	8-bit	chip	technology	was	seen	in	early	1980s,	when	a	series	of	16-bit	chips	namely	8086	and	8088	were	introduced	by	Intel	Corporation,	each	one	with	an	advancement	over	the	other.	8088	is	a	8/16	bit	chip	i.e.	an	8-
bit	path	is	used	to	move	data	between	chip	and	primary	storage(external	path),	at	a	time,	but	processing	is	done	within	the	chip	using	a	16-bit	path(internal	path)	at	a	time.	8086	is	a	16/16	bit	chip	i.e.	the	internal	and	external	paths	both	are	16	bit	wide.	Both	these	chips	can	support	a	primary	storage	capacity	of	upto	1	mega	byte	(MB).	These
computers	are	usually	divided	into	desktop	models	and	laptop	models.	They	are	terribly	limited	in	what	they	can	do	when	compared	to	the	larger	models	discussed	above	because	they	can	only	be	used	by	one	person	at	a	time,	they	are	much	slower	than	the	larger	computers,	and	they	cannot	store	nearly	as	much	information,	but	they	are	excellent
when	used	in	small	businesses,	homes,	and	school	classrooms.	These	computers	are	inexpensive	and	easy	to	use.	They	have	become	an	indispensable	part	of	modern	life.	Thus	•	Used	for	memory	intense	and	graphic	intense	applications	•	Are	single-user	machines	1.5.2	MINI	COMPUTER	20.	Paper	Name:	Computer	Organization	and	Architecture
Minicomputers	are	much	smaller	than	mainframe	computers	and	they	are	also	much	less	expensive.	The	cost	of	these	computers	can	vary	from	a	few	thousand	dollars	to	several	hundred	thousand	dollars.	They	possess	most	of	the	features	found	on	mainframe	computers,	but	on	a	more	limited	scale.	They	can	still	have	many	terminals,	but	not	as	many
as	the	mainframes.	They	can	store	a	tremendous	amount	of	information,	but	again	usually	not	as	much	as	the	mainframe.	Medium	and	small	businesses	typically	use	these	computers.	Thus	•	Fit	somewhere	between	mainframe	and	PCs	•	Would	often	be	used	for	file	servers	in	networks	1.5.3.	MAINFRAME	COMPUTER	Mainframe	computers	are	very
large,	often	filling	an	entire	room.	They	can	store	enormous	of	information,	can	perform	many	tasks	at	the	same	time,	can	communicate	with	many	users	at	the	same	time,	and	are	very	expensive.	.	The	price	of	a	mainframe	computer	frequently	runs	into	the	millions	of	dollars.	Mainframe	computers	usually	have	many	terminals	connected	to	them.
These	terminals	look	like	small	computers	but	they	are	only	devices	used	to	send	and	receive	information	from	the	actual	computer	using	wires.	Terminals	can	be	located	in	the	same	room	with	the	mainframe	computer,	but	they	can	also	be	in	different	rooms,	buildings,	or	cities.	Large	businesses,	government	agencies,	and	universities	usually	use	this
type	of	computer.	Thus	•	Most	common	type	of	large	computers	•	Used	by	many	people	using	same	databases	•	Can	support	many	terminals	•	Used	in	large	company	like	banks	and	insurance	companies	1.5.4.	SUPER	COMPUTER	The	upper	end	of	the	state	of	the	art	mainframe	machine	is	the	supercomputer.	These	are	amongst	the	fastest	machines
in	terms	of	processing	speed	and	use	multiprocessing	techniques,	were	a	number	of	processors	are	used	to	solve	a	problem.	Computers	built	to	minimize	distance	between	points	for	very	fast	operation.	Used	for	extremely	complicated	computations.	Thus	o	Largest	and	most	powerful	o	Used	by	scientists	and	engineers	o	Very	expensive	o	Would	be
found	in	places	like	Los	Alamos	or	NASA	1.6	INSTRUCTION	EXECUTION	21.	Paper	Name:	Computer	Organization	and	Architecture	We	know	that	the	basic	function	performed	by	a	computer	is	the	execution	of	a	program.	The	program,	which	is	to	be	executed,	is	a	set	of	instructions,	which	are	stored	in	memory.	The	central	processing	unit	(CPU)
executes	the	instructions	of	the	program	to	complete	a	task.	The	instruction	execution	takes	place	in	the	CPU	registers.	Let	us,	first	discuss	few	typical	registers,	some	of	which	are	commonly	available	in	of	machines.	These	registers	are:-	•	Memory	Address	Register	(MAR):-	Connected	to	the	address	lines	of	the	system	bus.	It	specifies	the	address	of
memory	location	from	which	data	or	instruction	is	to	be	accessed	(for	read	operation)	or	to	which	the	data	is	to	be	stored	(for	write	operation).	•	Memory	Buffer	Register	(MBR):-	Connected	to	the	data	lines	of	the	system	bus.	It	specifies	which	data	is	to	be	accessed(for	read	operation)	or	to	which	data	is	to	be	stored	(for	write	operation).	•	Program
Counter	(PC):-	Holds	address	of	next	instruction	to	be	fetched,	after	the	execution	of	an	on-going	instruction.	•	Instruction	Register	(IR):-	Here	the	instruction	are	loaded	before	their	execution	or	holds	last	instruction	fetched.	Instruction	Cycle	The	simplest	model	of	instruction	processing	can	be	a	two	step	process.	The	CPU	reads	(fetches)
instructions	(codes)	from	the	memory	one	at	a	time,	and	executes.	Instruction	fetch	involves	reading	of	an	instruction	from	a	memory	location	to	the	CPU	register.	The	execution	of	this	instruction	may	involve	several	operations	depending	on	the	nature	of	the	instruction.	Thus	to	execute	an	instruction,	a	processor	must	go	through	two	sub-	cycles:	22.
Paper	Name:	Computer	Organization	and	Architecture	UNIT-2	REGISTER	TRANSFER	AND	MICRO	OPERATIONS	2.1	Register	transfer	2.2	Bus	and	Memory	Transfers	2.2.1	Tree-state	bus	buffers	2.2.2	Memory	transfer	2.3	Micro-Operations	2.3.1	Register	transfer	Micro-Operations	2.3.2	Arithmetic	Micro-Operations	2.3.3	Logic	Micro-Operations	2.3.4
Shift	Micro-Operations	2.1	Introduction	To	Register	Transfer	A	micro	operations	is	an	elementary	operation	performed	on	the	information	stored	in	one	or	more	registers.	The	result	of	the	operation	may	replace	the	previous	binary	information	of	a	register	or	may	by	transferred	to	another	register.	The	symbolic	notation	used	to	describe	the	micro
operation	transfer	among	registers	is	called	a	register	transfer	language.	The	term	“register	transfer”	implies	the	availability	of	hardware	logic	circuits	that	can	perform	stated	micro	operation	and	transfer	the	results	to	the	operation	to	the	same	or	another	register.	Register	Transfer	We	designate	computer	registers	by	capital	letters	to	denote	the
function	of	the	register.	For	example,	the	register	that	holds	an	address	for	the	memory	unit	is	usually	called	a	memory	address	register,	represented	by	MAR.	Other	examples	are	PC	(for	program	counter),	IR	(for	instruction	register)	and	R1	(for	processor	register).	We	show	the	individual	flip-flops	in	an	n-bit	register	by	giving	numbers	them	in
sequence	from	0	through	n	-	1,	starting	from	0	in	the	right	most	position	and	increasing	the	numbers	toward	the	left.	A	16-bit	register	is	divided	into	two	halves.	Low	byte	(Bits	0	through	7)	is	assigned	the	symbol	L	and	high	byte	(Bits	8	through	15)	is	assigned	the	symbol	H.	The	name	of	a	16-	bit	register	is	PC.	The	symbol	PC(L)	represents	the	low
order	byte	and	PC(H)	designates	the	high	order	byte.	The	statement	R2	R1	refers	the	transfer	of	the	content	of	register	R1	into	register	R2.	It	should	be	noted	that	the	content	of	the	source	register	R1	does	not	23.	Paper	Name:	Computer	Organization	and	Architecture	change	after	the	transfer.	In	real	applications,	the	transfer	occurs	only	under	a
predetermined	control	condition.	This	can	be	shown	by	means	of	an	“if-then”	statement:	If	P=1	then	R2	R1	where	P	is	a	control	signal	generated	in	the	control	section	of	the	system.	For	convenience	we	separate	the	control	variables	from	the	register	transfer	operation	by	specifying	a	control	function.	A	control	function	is	a	Boolean	variable	that	is
equal	to	1	or	0.	The	control	function	is	written	as	follows:	P:	R2	R1	Bus	Since	a	computer	has	many	registers,	paths	must	be	provided	to	transfer	information	from	one	register	to	another.	If	separate	lines	are	used	between	each	register	and	all	other	registers,	number	of	wires	will	be	excessive	in	the	system.	A	more	efficient	scheme	for	transferring
information	between	registers	in	a	multiple-register	configuration	is	a	common	bus	system.	A	bus	structure	consists	of	a	set	of	common	lines,	one	for	each	bit	of	a	register,	through	which	binary	information	is	transferred	one	at	a	time.	Control	signals	determine	which	register	is	selected	by	the	bus	during	each	particular	register	transfer.	A	common
bus	system	can	be	constructed	using	multiplexers.	These	multiplexers	select	the	source	register	whose	binary	information	is	then	placed	on	the	bus.	A	bus	system	will	multiplex	registers	of	a	bit	each	to	produce	an	n-line	common	bus.	The	number	of	multiplexers	required	to	construct	the	bus	is	equal	to	n,	where	n	is	the	number	of	bits	in	each	register.
The	size	of	each	multiplexer	must	be	k	×	1	since	it	multiplexes	k	data	lines.	A	bus	system	can	be	constructed	with	‘three-state	gates’	instead	of	multiplexers.	A	three-state	gate	is	a	digital	circuit	that	shows	three	states.	Two	of	the	states	are	equivalent	to	logic	1	and	0.	The	third	state	is	a	high	impedance	state.	The	high-	impedance	state	behaves	like	an
open	circuit,	which	means	that	the	output	is	disconnected	and	does	not	have	a	logic	significance.	The	one	most	commonly	used	in	the	design	of	a	bus	system	is	the	buffer	gate.	The	graphic	symbol	of	a	three	state	buffer	gate	is	shown	in	the	figure	given	below.	The	control	input	determines	the	output.	Normal	input	A	Output	Y	=	A	if	C	=	1	High
impedance	if	C=0	Control	input	C	24.	Paper	Name:	Computer	Organization	and	Architecture	The	construction	of	a	bus	system	for	four	registers	is	shown	in	the	figure	in	on	the	next	page.	The	function	table	of	the	above	bus	system	is	S1	S0	Register	collected	0	0	A	0	1	B	1	0	C	1	1	D	Three	state	table	buffers	Three	state	table	buffers:	A	bus	system	can
be	constructed	with	three	state	gates	instead	of	multiplexers.	A	three	states	gate	is	digital	circuit	that	exhibits	three	states.	Two	of	the	states	are	signals	equivalent	to	logic	1	and	0	as	in	a	conventional	gate.	The	third	state	is	a	high-impedance	state.	The	high-impedance	states	behaves	like	an	open	circuit,	which	means	that	the	output	is	disconnected
and	does	not	have	a	logic,	such	as	AND	or	NAND.	However	the	one	most	commonly	used	in	the	design	of	a	bus	system	is	the	buffer	gate.	The	construction	of	a	bus	system	with	three	state	table	buffers	is	shown	in	the	following	figure:	25.	Paper	Name:	Computer	Organization	and	Architecture	2.2	Bus	And	Memory	Transfer	A	read	operation	implies
transfer	of	information	to	the	outside	environment	from	a	memory	word,	whereas	storage	of	information	into	the	memory	is	defined	as	write	operation.	Symbolizing	a	memory	word	by	the	letter	M,	it	is	selected	by	the	memory	address	during	the	transfer	which	is	a	specification	for	transfer	operations.	The	address	is	specified	by	enclosing	it	in	square
brackets	following	the	letter	M.	For	example,	the	read	operation	for	the	transfer	of	a	memory	unit	M	from	an	address	register	AR	to	another	data	register	DR	can	be	illustrated	as:	Read:	DR	←M[AR]	The	write	operation	transfer	the	contents	of	a	data	register	to	a	memory	word	M	selected	by	the	address.	Assume	that	the	input	data	are	in	register	R1
and	the	address	in	the	AR.	The	write	operation	can	be	stated	symbolic	as	follows:	Write:	M[AR]	←	R1	This	cause	a	transfer	on	information	from	R1	into	the	memory	word	M	selected	by	the	address	in	AR.	2.3	Micro-Operations	A	micro-operation	is	an	elementary	operation	which	is	performed	on	the	data	stored	in	registers.	We	can	classify	the	micro-
operations	into	four	categories:	1.	Register	transfer:	transfer	binary	information	from	one	register	to	another.	2.	Arithmetic:	perform	arithmetic	operations	on	numeric	data	stored	in	registers.	26.	Paper	Name:	Computer	Organization	and	Architecture	3.	Logic:	perform	bit	manipulation	operation	on	non-numeric	data	stored	in	registers.	4.	Shift:
perform	shift	operations	on	data	stored	in	registers.	2.3.1	Arithmetic	Micro-operations	These	micro-operations	perform	some	basic	arithmetic	operations	on	the	numeric	data	stored	in	the	registers.	These	basic	operations	may	be	addition,	subtraction,	incrementing	a	number,	decrementing	a	number	and	arithmetic	shift	operation.	An	‘add’	micro-
operation	can	be	specified	as:	R3	R1	+	R2	It	implies:	add	the	contents	of	registers	R1	and	R2	and	store	the	sum	in	register	R3.	The	add	operation	mentioned	above	requires	three	registers	along	with	the	addition	circuit	in	the	ALU.	Subtraction,	is	implemented	through	complement	and	addition	operation	as:	R3	R1	–	R2	is	implemented	as	R3	R1	+	(2’s
complement	of	R2)	R3	R1	+	(1’s	complement	of	R2	+	1)	R3	R1	+	R2	+	1	An	increment	operation	can	be	symbolized	as:	R1	R1	+	1	while	a	decrement	operation	can	be	symbolized	as:	R1	R1	–	1	We	can	implement	increment	and	decrement	operations	by	using	a	combinational	circuit	or	binary	up/down	counters.	In	most	of	the	computers	multiplication
and	division	are	implemented	using	add/subtract	and	shift	micro-operations.	If	a	digital	system	has	implemented	division	and	multiplication	by	means	of	combinational	circuits	then	we	can	call	these	as	the	micro-operations	for	that	system.	An	arithmetic	circuit	is	normally	implemented	using	parallel	adder	circuits.	Each	of	the	multiplexers	(MUX)	of
the	given	circuit	has	two	select	inputs.	This	4-bit	circuit	takes	input	of	two	4-bit	data	values	and	a	carry-in-bit	and	outputs	the	four	resultant	data	bits	and	a	carry-out-bit.	With	the	different	input	values	we	can	obtain	various	micro-operations.	Equivalent	micro-operation	Micro-operation	name	R	R1	+	R2	Add	R	R1	+	R2	+1	Add	with	carry	R	R1	+	R2
Subtract	with	borrow	R	R1	+	2’s	Subtract	R	R1	Transfer	R	R1	+	1	Increment	R	R1	–	1	Decrement	27.	Paper	Name:	Computer	Organization	and	Architecture	2.3.2	Logic	Micro-operations	These	operations	are	performed	on	the	binary	data	stored	in	the	register.	For	a	logic	micro-operation	each	bit	of	a	register	is	treated	as	a	separate	variable.	For
example,	if	R1	and	R2	are	8	bits	registers	and	R1	contains	10010011	and	R2	contains	01010101	R1	AND	R2	00010001	Some	of	the	common	logic	micro-operations	are	AND,	OR,	NOT	or	complements.	Exclusive	OR,	NOR,	NAND.	We	can	have	four	possible	combinations	of	input	of	two	variables.	These	are	00,	01,	10	and	11.	Now,	for	all	these	4	input
combination	we	can	have	24	=	16	output	combinations	of	a	function.	This	implies	that	for	two	variables	we	can	have	16	logical	operations.	Logic	Micro	Operations	SELECTIVE	SET	The	selective-set	operation	sets	to	1	the	bits	in	register	A	where	there	are	corresponding	1’s	in	register	B.	it	does	not	affect	bit	positions	that	have	0’s	in	B.	the	following
numerical	example	clarifies	this	operation:-	1010	A	before	1100	B	(logic	operand)	1110	A	after	SELECTIVE	COMPLEMENT	The	selective-complement	operation	complements	bits	in	register	A	where	there	are	corresponding	1’s	in	register	B.	it	does	not	affect	bit	positions	that	have	0’s	in	B.	the	following	numerical	example	clarifies	this	operation:-
1010	A	before	1100	B	(logic	operand)	0110	A	after	SELECTIVE	CLEAR	The	selective-clear	operation	clears	to	0	the	bits	in	register	A	only	where	there	are	corresponding	1’s	in	register	B.	For	example:-	28.	Paper	Name:	Computer	Organization	and	Architecture	1010	A	before	1100	B	(logic	operand)	0010	A	after	MASK	OPERATION	The	mask	operation
is	similar	to	the	selective-clear	operation	except	that	thebits	of	A	are	cleared	only	where	there	are	corresponding	0’s	in	B.	the	mask	operation	is	an	AND	micro	operation,	for	example:-	1010	A	before	1100	B	(logic	operand)	1000	A	after	masking	INSERT	OPERATION	The	insert	operation	inserts	a	new	value	into	a	group	of	bits.	This	is	done	by	first
masking	the	bits	and	then	Oring	them	with	the	required	value.	For	example,	suppose	that	an	A	register	contains	eight	bits,	0110	1010.	to	replace	the	four	leftmost	bits	by	the	value	1001	we	first	the	four	unwanted	bits:-	0110	1010	A	before	0000	1111	B	(mask)	0000	1010	A	after	masking	and	then	insert	the	new	value:-	0000	1010	A	before	1001	0000	B
(insert)	1001	1010	A	after	insertion	the	mask	operation	is	an	AND	microoperation	and	the	insert	operation	is	an	OR	microoperation.	CLEAR	OPERATION	The	clear	operation	compares	the	words	in	A	and	B	and	produces	an	all	0’s	result	if	the	two	numbers	are	equal.	This	operation	is	achieved	by	an	exclusive-OR	microoperation	as	has	own	by	the
following	example:	1010	A	1010	B	0000	A	A	B	When	A	and	B	are	equal,	the	two	corresponding	bits	are	either	both	0	or	both	1.	in	either	case	the	exclusive-OR	operation	produces	a	0.	the	all-0’s	result	is	then	checked	to	determine	if	the	tow	numbers	were	equal.	29.	Paper	Name:	Computer	Organization	and	Architecture	2.3.4	Shift	Microoperations
Shift	microoperation	can	be	used	for	serial	transfer	of	data.	They	are	used	generally	with	the	arithmetic,	logic,	and	other	data-processing	operations.	The	contents	of	a	register	can	be	shifted	to	the	left	or	the	right.	During	a	shift-right	operation	the	serial	input	transfers	a	bit	into	the	leftmost	position.	The	serial	input	transfers	a	bit	into	the	rightmost
position	during	a	shift-left	operation.	There	are	three	types	of	shifts,	logical,	circular	and	arithmetic.	Logical	shift	A	logical	shift	operation	transfers	0	through	the	serial	input.	We	use	the	symbols	shl	and	shr	for	logical	shift	left	and	shift	right	microoperations,	e.g.	R1	←	shl	R1	R2	←	shr	R2	are	the	two	micro	operations	that	specify	a	1-bit	shift	left	of	the
content	of	register	R1	and	a	1-	bit	shift	right	of	the	content	of	register	R2.	Circular	shift	The	circular	shift	is	also	known	as	rotate	operation.	It	circulates	the	bits	of	the	register	around	the	two	ends	and	there	is	no	loss	of	information.	This	is	accomplished	by	connecting	the	serial	output	of	the	shift	register	to	its	serial	input.	We	use	the	symbols	cil	and
cir	for	the	circular	shift	left	and	circular	shift	right.	E.g.	suppose	Q1	register	contains	01101101	then	after	cir	operation,	it	contains	0110110	and	after	cil	operation	it	will	contain	11011010.	Arithmetic	Shift	An	arithmetic	shift	micro	operation	shifts	a	signed	binary	number	to	the	left	or	right.	The	effect	of	an	arithmetic	shift	left	operation	is	to	multiply
the	binary	number	by	2.	Similarly	an	arithmetic	shift	right	divides	the	number	by	2.	Because	the	sign	of	the	number	must	remain	the	same	arithmetic	shift-right	must	leave	the	sign	bit	unchanged,	when	it	is	multiplied	or	divided	by	2.	The	left	most	bit	in	a	register	holds	the	sign	bit,	and	the	remaining	bits	hold	the	number.	The	sign	bit	is	0	for	positive
and	1	for	negative.	Negative	numbers	are	in	2’s	complement	form.	Following	figure	shows	a	typical	register	of	n	bits.	Rn-1	Rn-2	→	R1	R0	Sign	bit	Arithmetic	shift	right	Bit	Rn-1	in	the	left	most	position	holds	the	sign	bit.	Rn-2	is	the	most	significant	bit	of	the	number	and	R0	is	the	least	significant	bit.	The	arithmetic	shift-right	leaves	the	sign	bit
unchanged	and	shifts	the	number	(including	the	sign	bits)	to	the	right.	Thus	Rn-1	remains	the	same,	Rn-2	receives	the	bit	from	Rn-1,	and	so	on	for	other	bits	in	the	register.	30.	Paper	Name:	Computer	Organization	and	Architecture	31.	Paper	Name:	Computer	Organization	and	Architecture	UNIT	3	PROGRAMMING	ELEMENTS	3.1	Computer
Arithmetic	3.2	Addition	and	subtraction	with	signed-magnitude	3.3	Multiplication	algorithm	3.3.1	Booth	multiplication	algorithm	3.3.2	Array	multiplier	3.3.3	Division	algorithm	3.3.3.1	Hardware	algorithm	3.3.3.2	Divide	Overflow	3.4	Floating-point	Arithmetic	operations	3.4.1	Basic	consideration	3.4.1.1	Register	configuration	3.4.1.2	Addition	and
subtraction	3.4.2	Decimal	Arithmetic	operations	3.4.2.1	BCD	adder	3.4.2.2	BCD	subtraction	3.1	Computer	Arithmetic	Data	is	manipulated	by	using	the	arithmetic	instructions	in	digital	computers.	Data	is	manipulated	to	produce	results	necessary	to	give	solution	for	the	computation	problems.	The	Addition,	subtraction,	multiplication	and	division	are



the	four	basic	arithmetic	operations.	If	we	want	then	we	can	derive	other	operations	by	using	these	four	operations.	To	execute	arithmetic	operations	there	is	a	separate	section	called	arithmetic	processing	unit	in	central	processing	unit.	The	arithmetic	instructions	are	performed	generally	on	binary	or	decimal	data.	Fixed-point	numbers	are	used	to
represent	integers	or	fractions.	We	can	have	signed	or	unsigned	negative	numbers.	Fixed-point	addition	is	the	simplest	arithmetic	operation.	If	we	want	to	solve	a	problem	then	we	use	a	sequence	of	well-defined	steps.	These	steps	are	collectively	called	algorithm.	To	solve	various	problems	we	give	algorithms.	In	order	to	solve	the	computational
problems,	arithmetic	instructions	are	used	in	digital	computers	that	manipulate	data.	These	instructions	perform	arithmetic	calculations.	32.	Paper	Name:	Computer	Organization	and	Architecture	And	these	instructions	perform	a	great	activity	in	processing	data	in	a	digital	computer.	As	we	already	stated	that	with	the	four	basic	arithmetic	operations
addition,	subtraction,	multiplication	and	division,	it	is	possible	to	derive	other	arithmetic	operations	and	solve	scientific	problems	by	means	of	numerical	analysis	methods.	A	processor	has	an	arithmetic	processor(as	a	sub	part	of	it)	that	executes	arithmetic	operations.	The	data	type,	assumed	to	reside	in	processor,	registers	during	the	execution	of	an
arithmetic	instruction.	Negative	numbers	may	be	in	a	signed	magnitude	or	signed	complement	representation.	There	are	three	ways	of	representing	negative	fixed	point	-	binary	numbers	signed	magnitude,	signed	1’s	complement	or	signed	2’s	complement.	Most	computers	use	the	signed	magnitude	representation	for	the	mantissa.	3.2	Addition	and
Subtraction	with	Signed	–Magnitude	Data	We	designate	the	magnitude	of	the	two	numbers	by	A	and	B.	Where	the	signed	numbers	are	added	or	subtracted,	we	find	that	there	are	eight	different	conditions	to	consider,	depending	on	the	sign	of	the	numbers	and	the	operation	performed.	These	conditions	are	listed	in	the	first	column	of	Table	4.1.	The
other	columns	in	the	table	show	the	actual	operation	to	be	performed	with	the	magnitude	of	the	numbers.	The	last	column	is	needed	to	present	a	negative	zero.	In	other	words,	when	two	equal	numbers	are	subtracted,	the	result	should	be	+0	not	-0.	The	algorithms	for	addition	and	subtraction	are	derived	from	the	table	and	can	be	stated	as	follows
(the	words	parentheses	should	be	used	for	the	subtraction	algorithm).	Table	4.1:	Addition	and	Subtraction	of	Signed-Magnitude	Numbers	Operation	Add	Magnitudes	Subtract	Magnitudes	When	A	>	B	When	A	<	B	When	A	=	B	(+A)	+	(+B)	+(A	+	B)	(+A)	+	(–	B)	+	(A	–	B)	–	(B	–	A)	+	(A	–	B)	(–	A)	+	(+	B)	–	(A	–	B)	+	(B	–	A)	+	(A	–	B)	(–	A)	+	(–	B)	–	(A	+	B)
(+	A)	–	(+	B)	+	(A	+	B)	–	(B	–	B)	+	(A	–	B)	(+	A)	–	(–	B)	+	(A	+	B)	(–A)	–	(+B)	–	(A	+	B)	(–A)	–	(–B)	–	(A	–	B)	+	(B	–	A)	+	(A	–	B)	Algorithm	33.	Paper	Name:	Computer	Organization	and	Architecture	When	the	signs	of	A	and	B	are	same,	add	the	two	magnitudes	and	attach	the	sign	of	result	is	that	of	A.	When	the	signs	of	A	and	B	are	not	same,	compare	the
magnitudes	and	subtract	the	smaller	number	from	the	larger.	Choose	the	sign	of	the	result	to	be	the	same	as	A,	if	A	>	B	or	the	complement	of	the	sign	of	A	if	A	<	B.	If	the	two	magnitudes	are	equal,	subtract	B	from	A	and	make	the	sign	of	the	result	will	be	positive.	3.3	Multiplication	Algorithms	Multiplication	of	two	fixed-point	binary	numbers	in	signed
magnitude	representation	is	done	with	paper	and	pencil	by	a	process	of	successive	shift	and	add	operations.	This	process	is	best	illustrated	with	a	numerical	example:	23	10111	Multiplicand	19	x	10011	Multiplier	10111	10111	00000	00000	10111	437	110110101	Product	This	process	looks	at	successive	bits	of	the	multiplier,	least	significant	bit	first.
If	the	multiplier	bit	is	1,	the	multiplicand	is	copied	as	it	is;	otherwise,	we	copy	zeros.	Now	we	shift	numbers	copied	down	one	position	to	the	left	from	the	previous	numbers.	Finally,	the	numbers	are	added	and	their	sum	produces	the	product.	Hardware	Implementation	for	signed-magnitude	data	When	multiplication	is	implemented	in	a	digital
computer,	we	change	the	process	slightly.	Here,	instead	of	providing	registers	to	store	and	add	simultaneously	as	many	binary	numbers	as	there	are	bits	in	the	multiplier,	it	is	convenient	to	provide	an	adder	for	the	summation	of	only	two	binary	numbers,	and	successively	accumulate	the	partial	products	in	a	register.	Second,	instead	of	shifting	the
multiplicand	to	left,	the	partial	product	is	shifted	to	the	right,	which	results	in	leaving	the	partial	product	and	the	multiplicand	in	the	required	relative	positions.	Now,	when	the	corresponding	bit	of	the	multiplier	is	0,	there	is	no	need	to	add	all	zeros	to	the	partial	product	since	it	will	not	alter	its	value.	The	hardware	for	multiplication	consists	of	the
equipment	given	in	Figure	4.5.	The	multiplier	is	stored	in	the	register	and	its	sign	in	Qs.	The	sequence	counter	SC	is	initially	set	bits	in	the	multiplier.	After	forming	each	partial	product	the	counter	is	decremented.	When	the	content	of	the	counter	reaches	zero,	the	product	is	complete	and	we	stop	the	process.	34.	Paper	Name:	Computer	Organization
and	Architecture	Figure	4.5:	Hardware	for	Multiply	Operation	3.3.1	Booth	Multiplication	Algorithm	If	the	numbers	are	represented	in	signed	2’s	complement	then	we	can	multiply	them	by	using	Booth	algorithm.	In	fact	the	strings	of	0's	in	the	multiplier	need	no	addition	but	just	shifting,	and	a	string	of	l's	in	the	multiplier	from	bit	weight	2k	to	weight
2m	can	be	treated	as	2k+1	-	2m.	For	example,	the	binary	number	001111	(+15)	has	a	string	of	1's	from	23	to	20(k	=	3,	m	=	0).	Table	4.2:	Numerical	Example	for	Binary	Multiplier	Multiplicand	B	=	10111	E	A	Q	SC	Multiplier	in	Q	0	00000	10011	101	Qn	=	1;	add	B	10111	First	partial	product	0	10111	Shift	right	EAQ	0	01011	11001	100	Qn	=	1;	add	B
10111	Second	partial	product	1	00010	Shift	right	EAQ	1	00001	01100	011	Qn	=	0;	shift	right	EAQ	0	01000	10110	010	Qn	=	0;	shift	right	EAQ	0	00100	01011	001	Qn	=	1;	add	B	10111	Fifth	partial	product	0	11011	Shift	right	EAQ	0	11011	35.	Paper	Name:	Computer	Organization	and	Architecture	Final	product	in	AQ	=	0110110101	The	number	can
be	represented	as	2k+1	–	2m	=	24-	20=	16	-	1	=	15.	Therefore,	the	multiplication	M	x	14,	where	M	is	the	multiplicand	and	14	the	multiplier	may	be	computed	as	M	x	24	-	M	x	21.	That	is,	the	product	can	be	obtained	by	shifting	the	binary	multiplicand	M	four	times	to	the	left	and	subtracting	M	shifted	left	once.	Booth	algorithm	needs	examination	of
the	multiplier	bits	and	shifting	of	the	partial	product.	Prior	to	the	shifting,	the	multiplicand	added	to	the	partial	product,	subtracted	from	the	partial	product,	or	left	unchanged	by	the	following	rules:	1.	The	multiplicand	is	subtracted	from	the	partial	product	when	we	get	the	first	least	significant	1	in	a	string	of	1's	in	the	multiplier.	2.	The	multiplicand
is	added	to	the	partial	product	when	we	get	the	first	Q	(provided	that	there	was	a	previous	1)	in	a	string	of	0's	in	the	multiplier.	3.	The	partial	product	does	not	change	when	the	multiplier	bit	is	the	same	as	the	previous	multiplier	bit.	The	algorithm	applies	to	both	positive	and	negative	multipliers	in	2's	complement	representation.	This	is	because	a
negative	multiplier	ends	with	a	string	of	l's	and	the	last	operation	will	be	a	subtraction	of	the	appropriate	weight.	For	example,	a	multiplier	equal	to	-14	is	represented	in	2's	complement	as	110010	and	is	treated	as	-24	+	22	-	21	=	-14.	The	hardware	implementation	of	Booth	algorithm	requires	the	register	configuration	shown	in	Figure	4.7(a).	Qn
represents	the	least	significant	bit	of	the	multiplier	in	register	QR.	An	extra	flip-flop	Qn+1	is	appended	to	QR	to	provide	a	double	bit	inspection	of	the	multiplier.	The	flowchart	for	Booth	algorithm	is	shown	in	Figure	4.7(b).	AC	and	the	appended	bit	Qn+1	are	initially	set	to	0	and	the	sequence	counter	SC	is	set	to	a	number	n	equal	to	the	number	of	bits
in	the	multiplier.	The	two	bits	of	the	multiplier	in	Qn	and	Qn+1	are	inspected.	If	the	two	bits	are	10,	it	means	that	the	first	1	in	a	string	of	1's	has	been	encountered.	This	needs	a	subtraction	of	the	multiplicand	from	the	partial	product	in	AC.	If	the	two	bits	are	equal	to	01.	It	means	that	the	first	0	in	a	string	of	0's	has	been	encountered.	This	needs	the
addition	of	the	multiplicand	to	the	partial	product	in	AC.	When	the	two	bits	are	equal,	the	partial	product	does	not	change.	An	overflow	cannot	occur	because	the	addition	and	subtraction	of	the	multiplicand	follow	each	other.	Hence,	the	two	numbers	that	are	added	always	have	opposite	sign,	a	condition	that	excludes	an	overflow.	Next	step	is	to	shift
right	the	partial	product	and	the	multiplier	(including	bit	Qn+1).	This	is	an	arithmetic	shift	right	(ashr)	operation	which	shifts	AC	and	QR	to	the	right	and	leaves	the	sign	bit	in	AC	same	The	sequence	counter	decrements	and	the	computational	loop	is	repeated	n	times.	36.	Paper	Name:	Computer	Organization	and	Architecture	Figure	4.7(a):	Hardware
for	Booth	Algorithm	Figure	4.7(b)	A	numerical	example	of	Booth	algorithm	is	given	in	Table	4.3	for	n	=	5.	It	gives	the	multiplication	of	(-9)	x	(-13)	=	+117.	Note	that	the	multiplier	in	QR	is	negative	and	that	the	multiplicand	in	BR	is	also	negative.	The	10-bit	product	appears	in	AC.	The	final	value	of	Qn+1	is	the	original	sign	bit	of	the	multiplier	and
should	not	be	taken	as	part	of	the	product.	Table	4.3:	Example	of	Multiplication	with	Booth	Algorithm	BR	=	10111	Qn	Qn+1	BR	+	1	=	01001	AC	QR	Qn+1	SC	1	0	Initial	00000	10011	0	101	Subtract	BR	01001	01001	ashr	00100	11001	1	100	1	1	ashr	00010	01100	1	011	0	1	Add	BR	10111	11001	ashr	11100	10110	0	010	0	0	ashr	11110	01011	0	001	1	0
Subtract	BR	01001	00111	37.	Paper	Name:	Computer	Organization	and	Architecture	ashr	0011	10101	1	000	3.3.2	Array	Multiplier	To	check	the	bits	of	the	multiplier	one	at	a	time	and	forming	partial	products	is	a	sequential	operation	requiring	a	sequence	of	add	and	shift	micro-operations.	The	multiplication	of	two	binary	numbers	can	be	done	with
one	micro-operation	by	using	combinational	circuit	that	forms	the	product	bits	all	at	once.	This	is	a	fast	way	since	all	it	takes	is	the	time	for	the	signals	to	propagate	through	the	gates	that	form	the	multiplication	array.	However,	an	array	multiplier	requires	a	large	number	of	gates,	and	so	it	is	not	an	economical	unit	for	the	development	of	ICs.	Now	we
see	how	an	array	multiplier	is	implemented	with	a	combinational	circuit.	Consider	the	multiplication	of	two	2-bit	numbers	as	shown	in	Fig.	4.8.	The	multiplicand	bits	are	b1	and	b0,	the	multiplier	bits	are	a1	and	a0,	and	the	product	is	c3	c2	c1	c0.	The	first	partial	product	is	obtained	by	multiplying	a0	by	b1b0.	The	multiplication	of	two	bits	gives	a	1	if
both	bits	are	1;	otherwise,	it	produces	a	0.	This	is	identical	to	an	AND	operation	and	can	we	implement	it	with	an	AND	gate.	As	shown	in	the	diagram,	the	first	partial	product	is	formed	by	means	of	two	AND	gates.	The	second	partial	product	is	formed	by	multiplying	a1	by	b1b0	and	is	shifted	one	position	to	the	left.	The	two	partial	products	are	added
with	two	half-adder	(HA)	circuits.	Usually,	there	are	more	bits	in	the	partial	products	and	it	will	be	necessary	to	use	full-adders	to	produce	the	sum.	Note	that	the	least	significant	bit	of	the	product	does	not	have	to	go	through	an	adder	since	it	is	formed	by	the	output	of	the	first	AND	gate.	A	combinational	circuit	binary	multiplier	with	more	bits	can	be
constructed	in	a	similar	fashion.	A	bit	of	the	multiplier	is	ANDed	with	each	bit	of	the	multiplicand	in	as	many	levels	as	there	are	bits	in	the	multiplier.	The	binary	output	in	each	level	AND	gates	is	added	in	parallel	with	the	partial	product	of	the	previous	level	to	form	a	new	partial	product.	The	last	level	produces	the	product.	For	j	multiplier	bits	and	k
multiplicand	bits	we	need	j	*	k	AND	gates	and	(j	–	1)	k-bit	adders	to	produce	a	product	of	j	+	k	bits.	38.	Paper	Name:	Computer	Organization	and	Architecture	Figure	4.8:	2-bit	by	2-bit	array	multiplier	As	a	second	example,	consider	a	multiplier	circuit	that	multiplies	a	binary	number	of	four	bits	with	a	number	of	three	bits.	Let	the	multiplicand	be
represented	by	b3b2b1b0	and	the	multiplier	by	a2a1a0.	Since	k=4	and	j=3,	we	need	12	AND	gates	and	two	4-bit	adders	to	produce	a	product	of	seven	bits.	The	logic	diagram	of	the	multiplier	is	shown	in	Figure	4.9.	39.	Paper	Name:	Computer	Organization	and	Architecture	Figure	4.9:	4-bit	by	3-bit	array	multiplier	3.3.3	Division	Algorithms	Division	of
two	fixed-point	binary	numbers	in	signed	magnitude	representation	is	performed	with	paper	and	pencil	by	a	process	of	successive	compare,	shift	and	subtract	operations.	Binary	division	is	much	simpler	than	decimal	division	because	here	the	quotient	digits	are	either	0	or	1	and	there	is	no	need	to	estimate	how	many	times	the	dividend	or	partial
remainder	fits	into	the	divisor.	The	division	process	is	described	in	Figure	4.10.	The	divisor	B	has	five	bits	and	the	dividend	A	has	ten.	c6	c5	c4	c3	c2	c1	c0	40.	Paper	Name:	Computer	Organization	and	Architecture	Division:	B	=	10001	11010	0111000000	01110	011100	-	10001	-	010110	-	-10001	-	-	001010	-	-	-	010100	-	-	-	-10001	-	-	-	-000110	-	-	-	-
-00110	Quotient	=	Q	Dividend	=	A	5	bits	of	A	<	B,	quotient	has	5	bits	6	bits	of	A	B	Shift	right	B	and	subtract;	enter	1	in	Q	7	bits	of	remainder	B	Shift	right	B	and	subtract;	enter	1	in	Q	Remainder	<	B;	enter	0	in	Q;	shift	right	B	Remainder	B	Shift	right	B	and	subtract;	enter	1	in	Q	Remainder	<	B;	enter	0	in	Q	Final	remainder	Figure	4.10:	Example	of
Binary	Division	The	devisor	is	compared	with	the	five	most	significant	bits	of	the	dividend.	Since	the	5-	bit	number	is	smaller	than	B,	we	again	repeat	the	same	process.	Now	the	6-bit	number	is	greater	than	B,	so	we	place	a	1	for	the	quotient	bit	in	the	sixth	position	above	the	dividend.	Now	we	shift	the	divisor	once	to	the	right	and	subtract	it	from	the
dividend.	The	difference	is	known	as	a	partial	remainder	because	the	division	could	have	stopped	here	to	obtain	a	quotient	of	1	and	a	remainder	equal	to	the	partial	remainder.	Comparing	a	partial	remainder	with	the	divisor	continues	the	process.	If	the	partial	remainder	is	greater	than	or	equal	to	the	divisor,	the	quotient	bit	is	equal	to	1.	The	divisor
is	then	shifted	right	and	subtracted	from	the	partial	remainder.	If	the	partial	remainder	is	smaller	than	the	divisor,	the	quotient	bit	is	0	and	no	subtraction	is	needed.	The	divisor	is	shifted	once	to	the	right	in	any	case.	Obviously	the	result	gives	both	a	quotient	and	a	remainder.	Hardware	Implementation	for	Signed-Magnitude	Data	In	hardware
implementation	for	signed-magnitude	data	in	a	digital	computer,	it	is	convenient	to	change	the	process	slightly.	Instead	of	shifting	the	divisor	to	the	right,	two	dividends,	or	partial	remainders,	are	shifted	to	the	left,	thus	leaving	the	two	numbers	in	the	required	relative	position.	Subtraction	is	achieved	by	adding	A	to	the	2's	complement	of	B.	End	carry
gives	the	information	about	the	relative	magnitudes.	The	hardware	required	is	identical	to	that	of	multiplication.	Register	EAQ	is	now	shifted	to	the	left	with	0	inserted	into	Qn	and	the	previous	value	of	E	is	lost.	The	example	is	given	in	Figure	4.10	to	clear	the	proposed	division	process.	The	divisor	is	stored	in	the	B	register	and	the	double-length
dividend	is	stored	in	registers	A	and	Q.	The	dividend	is	shifted	to	the	left	and	the	divisor	is	subtracted	by	adding	its	2's	complement	value.	E	41.	Paper	Name:	Computer	Organization	and	Architecture	keeps	the	information	about	the	relative	magnitude.	A	quotient	bit	1	is	inserted	into	Qn	and	the	partial	remainder	is	shifted	to	the	left	to	repeat	the
process	when	E	=	1.	If	E	=	0,	it	signifies	that	A	<	B	so	the	quotient	in	Qn	remains	a	0	(inserted	during	the	shift).	To	restore	the	partial	remainder	in	A	the	value	of	B	is	then	added	to	its	previous	value.	The	partial	remainder	is	shifted	to	the	left	and	the	process	is	repeated	again	until	we	get	all	five	quotient-bits.	Note	that	while	the	partial	remainder	is
shifted	left,	the	quotient	bits	are	shifted	also	and	after	five	shifts,	the	quotient	is	in	Q	and	A	has	the	final	remainder.	Before	showing	the	algorithm	in	flowchart	form,	we	have	to	consider	the	sign	of	the	result	and	a	possible	overflow	condition.	The	sign	of	the	quotient	is	obtained	from	the	signs	of	the	dividend	and	the	divisor.	If	the	two	signs	are	same,
the	sign	of	the	quotient	is	plus.	If	they	are	not	identical,	the	sign	is	minus.	The	sign	of	the	remainder	is	the	same	as	that	of	the	dividend.	Figure	4.11:	Example	of	Binary	Division	with	Digital	Hardware	3.3.3.1	Hardware	Algorithm	42.	Paper	Name:	Computer	Organization	and	Architecture	Figure	4.6	is	a	flowchart	of	the	hardware	multiplication
algorithm.	In	the	beginning,	the	multiplicand	is	in	B	and	the	multiplier	in	Q.	Their	corresponding	signs	are	in	Bs	and	Qs	respectively.	We	compare	the	signs	of	both	A	and	Q	and	set	to	corresponding	sign	of	the	product	since	a	double-length	product	will	be	stored	in	registers	A	and	Q.	Registers	A	and	E	are	cleared	and	the	sequence	counter	SC	is	set	to
the	number	of	bits	of	the	multiplier.	Since	an	operand	must	be	stored	with	its	sign,	one	bit	of	the	word	will	be	occupied	by	the	sign	and	the	magnitude	will	consist	of	n-1	bits.	Now,	the	low	order	bit	of	the	multiplier	in	Qn	is	tested.	If	it	is	1,	the	multiplicand	(B)	is	added	to	present	partial	product	(A),	0	otherwise.	Register	EAQ	is	then	shifted	once	to	the
right	to	form	the	new	partial	product.	The	sequence	counter	is	decremented	by	1	and	its	new	value	checked.	If	it	is	not	equal	to	zero,	the	process	is	repeated	and	a	new	partial	product	is	formed.	When	SC	=	0	we	stops	the	process.	43.	Paper	Name:	Computer	Organization	and	Architecture	Figure	4.6:	Flowchart	for	Multiply	Operation	The	hardware
divide	algorithm	is	given	in	Figure	4.12.	A	and	Q	contain	the	dividend	and	B	has	the	divisor.	The	sign	of	the	result	is	transferred	into	Q.	A	constant	is	set	into	the	sequence	counter	SC	to	specify	the	number	of	bits	in	the	quotient.	As	in	multiplication,	we	assume	that	operands	are	transferred	to	registers	from	a	memory	unit	that	has	words	of	n	bits.
Since	an	operand	must	be	stored	with	its	sign,	one	bit	of	the	word	will	be	occupied	by	the	sign	and	the	magnitude	will	have	n-1	bits.	44.	Paper	Name:	Computer	Organization	and	Architecture	We	can	check	a	divide-overflow	condition	by	subtracting	the	divisor	(B)	from	half	of	the	bits	of	the	dividend	stored	(A).	If	AB	because	EA	consists	of	1	followed
by	n-1	bits	while	B	consists	of	only	n-1	bits.	In	this	case,	B	must	be	subtracted	from	EA	and	1	inserted	into	Qn	for	the	quotient	bit.	Since	in	register	A,	the	high-order	bit	of	the	dividend	(which	is	in	E)	is	missing,	its	value	is	EA	–	2n-1.	Adding	to	this	value	the	2’s	complement	of	B	results	in:	(EA	–	2n-1)	+	(2n-1–B)	=	EA	–	B	If	we	want	E	to	remain	a	1,	the
carry	from	this	addition	is	not	transferred	to	E.	If	the	shift-left	operation	inserts	a	0	into	E,	we	subtract	the	divisor	by	adding	its	2’s	complement	value	and	the	carry	is	transferred	into	E.	If	E=1,	it	shows	that	A<	B,	therefore	Qn	is	set.	If	E	=	0,	it	signifies	that	A	<	B	and	the	original	number	is	restored	by	B	+	A.	In	the	latter	case	we	leave	a	0	in	Qn.	We
repeat	this	process	with	register	A	holding	the	partial	remainder.	After	n-1	loops,	the	quotient	magnitude	is	stored	in	register	Q	and	the	remainder	is	found	in	register	A.	The	quotient	sign	is	in	Qs	and	the	sign	of	the	remainder	is	in	As.	45.	Paper	Name:	Computer	Organization	and	Architecture	Figure	4.12:	Flowchart	for	Divide	Operation	3.3.3.2	Divide
Overflow	An	overflow	may	occur	in	the	division	operation,	which	may	be	easy	to	handle	if	we	are	using	paper	and	pencil	but	is	not	easy	when	are	using	hardware.	This	is	because	the	length	of	registers	is	finite	and	will	not	hold	a	number	that	exceeds	the	standard	length.	To	see	this,	let	us	consider	a	system	that	has	5-bit	registers.	We	use	one	register
to	hold	the	divisor	and	two	registers	to	hold	the	dividend.	From	the	example	of	Figure	4.12,	the	END	(Divide	overflow)	END	(Quotient	is	in	Q	remainder	is	in	A)	46.	Paper	Name:	Computer	Organization	and	Architecture	quotient	will	consist	of	six	bits	if	the	five	most	significant	bits	of	the	dividend	constitute	a	number	greater	than	the	divisor.	The
quotient	is	to	be	stored	in	a	standard	5-bit	register,	so	the	overflow	bit	will	require	one	more	flip-flop	for	storing	the	sixth	bit.	This	divide-overflow	condition	must	be	avoided	in	normal	computer	operations	because	the	entire	quotient	will	be	too	long	for	transfer	into	a	memory	unit	that	has	words	of	standard	length,	that	is,	the	same	as	the	length	of
registers.	Provisions	to	ensure	that	this	condition	is	detected	must	be	included	in	either	the	hardware	or	the	software	of	the	computer,	or	in	a	combination	of	the	two.	When	the	dividend	is	twice	as	long	as	the	divisor,	we	can	understand	the	condition	for	overflow	as	follows:	A	divide-overflow	occurs	if	the	high-order	half	bits	of	the	dividend	makes	a
number	greater	than	or	equal	to	the	divisor.	Another	problem	associated	with	division	is	the	fact	that	a	division	by	zero	must	be	avoided.	The	divide-overflow	condition	takes	care	of	this	condition	as	well.	This	occurs	because	any	dividend	will	be	greater	than	or	equal	to	a	divisor,	which	is	equal	to	zero.	Overflow	condition	is	usually	detected	when	a
special	flip-flop	is	set.	We	will	call	it	a	divide-overflow	flip-flop	and	label	it	DVF.	3.4	Floating-point	Arithmetic	operations	In	many	high-level	programming	languages	we	have	a	facility	for	specifying	floating-	point	numbers.	The	most	common	way	is	by	a	real	declaration	statement.	High	level	programming	languages	must	have	a	provision	for	handling
floating-point	arithmetic	operations.	The	operations	are	generally	built	in	the	internal	hardware.	If	no	hardware	is	available,	the	compiler	must	be	designed	with	a	package	of	floating-point	software	subroutine.	Although	the	hardware	method	is	more	expensive,	it	is	much	more	efficient	than	the	software	method.	Therefore,	floating-	point	hardware	is
included	in	most	computers	and	is	omitted	only	in	very	small	ones.	3.4.1	Basic	Considerations	There	are	two	part	of	a	floating-point	number	in	a	computer	-	a	mantissa	m	and	an	exponent	e.	The	two	parts	represent	a	number	generated	from	multiplying	m	times	a	radix	r	raised	to	the	value	of	e.	Thus	m	x	re	The	mantissa	may	be	a	fraction	or	an	integer.
The	position	of	the	radix	point	and	the	value	of	the	radix	r	are	not	included	in	the	registers.	For	example,	assume	a	fraction	representation	and	a	radix	10.	The	decimal	number	537.25	is	represented	in	a	register	with	m	=	53725	and	e	=	3	and	is	interpreted	to	represent	the	floating-point	number	.53725	x	103	47.	Paper	Name:	Computer	Organization
and	Architecture	A	floating-point	number	is	said	to	be	normalized	if	the	most	significant	digit	of	the	mantissa	in	nonzero.	So	the	mantissa	contains	the	maximum	possible	number	of	significant	digits.	We	cannot	normalize	a	zero	because	it	does	not	have	a	nonzero	digit.	It	is	represented	in	floating-point	by	all	0’s	in	the	mantissa	and	exponent.	Floating-
point	representation	increases	the	range	of	numbers	for	a	given	register.	Consider	a	computer	with	48-bit	words.	Since	one	bit	must	be	reserved	for	the	sign,	the	range	of	fixed-point	integer	numbers	will	be	+	(247	–	1),	which	is	approximately	+	1014.	The	48	bits	can	be	used	to	represent	a	floating-point	number	with	36	bits	for	the	mantissa	and	12
bits	for	the	exponent.	Assuming	fraction	representation	for	the	mantissa	and	taking	the	two	sign	bits	into	consideration,	the	range	of	numbers	that	can	be	represented	is	+	(1	–	2-35)	x	22047	This	number	is	derived	from	a	fraction	that	contains	35	1’s,	an	exponent	of	11	bits	(excluding	its	sign),	and	because	211–1	=	2047.	The	largest	number	that	can
be	accommodated	is	approximately	10615.	The	mantissa	that	can	accommodated	is	35	bits	(excluding	the	sign)	and	if	considered	as	an	integer	it	can	store	a	number	as	large	as	(235	–1).	This	is	approximately	equal	to	1010,	which	is	equivalent	to	a	decimal	number	of	10	digits.	Computers	with	shorter	word	lengths	use	two	or	more	words	to	represent	a
floating-	point	number.	An	8-bit	microcomputer	uses	four	words	to	represent	one	floating-point	number.	One	word	of	8	bits	are	reserved	for	the	exponent	and	the	24	bits	of	the	other	three	words	are	used	in	the	mantissa.	Arithmetic	operations	with	floating-point	numbers	are	more	complicated	than	with	fixed-point	numbers.	Their	execution	also	takes
longer	time	and	requires	more	complex	hardware.	Adding	or	subtracting	two	numbers	requires	first	an	alignment	of	the	radix	point	since	the	exponent	parts	must	be	made	equal	before	adding	or	subtracting	the	mantissas.	We	do	this	alignment	by	shifting	one	mantissa	while	its	exponent	is	adjusted	until	it	becomes	equal	to	the	other	exponent.
Consider	the	sum	of	the	following	floating-point	numbers:	.5372400	x	102	+	.1580000	x	10-1	It	is	necessary	to	make	two	exponents	be	equal	before	the	mantissas	can	be	added.	We	can	either	shift	the	first	number	three	positions	to	the	left,	or	shift	the	second	number	three	positions	to	the	right.	When	we	store	the	mantissas	in	registers,	shifting	to	the
left	causes	a	loss	of	most	significant	digits.	Shifting	to	the	right	causes	a	loss	of	least	significant	digits.	The	second	method	is	preferable	because	it	only	reduces	the	accuracy,	while	the	first	method	may	cause	an	error.	The	usual	alignment	procedure	is	to	shift	the	mantissa	that	has	the	smaller	exponent	to	the	right	by	a	number	of	places	equal	to	the
difference	between	the	exponents.	Now,	the	mantissas	can	be	added.	48.	Paper	Name:	Computer	Organization	and	Architecture	.	5372400	x	102	+.	0001580	x	102	.	5373980	x	102	When	two	normalized	mantissas	are	added,	the	sum	may	contain	an	overflow	digit.	An	overflow	can	be	corrected	easily	by	shifting	the	sum	once	to	the	right	and
incrementing	the	exponent.	When	two	numbers	are	subtracted,	the	result	may	contain	most	significant	zeros	as	shown	in	the	following	example:	.56780	x	105	-	.56430	x	105	.00350	x	105	An	underflow	occurs	if	a	floating-point	number	that	has	a	0	in	the	most	significant	position	of	the	mantissa.	To	normalize	a	number	that	contains	an	underflow,	we
shift	the	mantissa	to	the	left	and	decrement	the	exponent	until	a	nonzero	digit	appears	in	the	first	position.	Here,	it	is	necessary	to	shift	left	twice	to	obtain	.35000	x	103.	In	most	computers	a	normalization	procedure	is	performed	after	each	operation	to	ensure	that	all	results	are	in	a	normalized	form.	Floating-point	multiplication	and	division	need	not
do	an	alignment	of	the	mantissas.	Multiplying	the	two	mantissas	and	adding	the	exponents	can	form	the	product.	Dividing	the	mantissas	and	subtracting	the	exponents	perform	division.	The	operations	done	with	the	mantissas	are	the	same	as	in	fixed-point	numbers,	so	the	two	can	share	the	same	registers	and	circuits.	The	operations	performed	with
the	exponents	are	compared	and	incremented	(for	aligning	the	mantissas),	added	and	subtracted	(for	multiplication)	and	division),	and	decremented	(to	normalize	the	result).	We	can	represent	the	exponent	in	any	one	of	the	three	representations	-	signed-	magnitude,	signed	2’s	complement	or	signed	1’s	complement.	A	is	a	fourth	representation	also,
known	as	a	biased	exponent.	In	this	representation,	the	sign	bit	is	removed	from	beginning	to	form	a	separate	entity.	The	bias	is	a	positive	number	that	is	added	to	each	exponent	as	the	floating-point	number	is	formed,	so	that	internally	all	exponents	are	positive.	The	following	example	may	clarify	this	type	of	representation.	Consider	an	exponent	that
ranges	from	–50	to	49.	Internally,	it	is	represented	by	two	digits	(without	a	sign)	by	adding	to	it	a	bias	of	50.	The	exponent	register	contains	the	number	e	+	50,	where	e	is	the	actual	exponent.	This	way,	the	exponents	are	represented	in	registers	as	positive	numbers	in	the	range	of	00	to	99.	Positive	exponents	in	registers	have	the	range	of	numbers
from	99	to	50.	The	subtraction	pf	50	gives	the	positive	values	from	49	to	0.	Negative	exponents	are	represented	in	registers	in	the	range	of	–1	to	–50.	Biased	exponents	have	the	advantage	that	they	contain	only	positive	numbers.	Now	it	becomes	simpler	to	compare	their	relative	magnitude	without	bothering	about	their	49.	Paper	Name:	Computer
Organization	and	Architecture	signs.	Another	advantage	is	that	the	smallest	possible	biased	exponent	contains	all	zeros.	The	floating-point	representation	of	zero	is	then	a	zero	mantissa	and	the	smallest	possible	exponent.	3.1.1.1	Register	Configuration	The	register	configuration	for	floating-point	operations	is	shown	in	figure	4.13.	As	a	rule,	the	same
registers	and	adder	used	for	fixed-point	arithmetic	are	used	for	processing	the	mantissas.	The	difference	lies	in	the	way	the	exponents	are	handled.	The	register	organization	for	floating-point	operations	is	shown	in	Fig.	4.13.	Three	registers	are	there,	BR,	AC,	and	QR.	Each	register	is	subdivided	into	two	parts.	The	mantissa	part	has	the	same
uppercase	letter	symbols	as	in	fixed-point	representation.	The	exponent	part	may	use	corresponding	lower-case	letter	symbol.	Figure	4.13:	Registers	for	Floating	Point	arithmetic	operations	Assuming	that	each	floating-point	number	has	a	mantissa	in	signed-magnitude	representation	and	a	biased	exponent.	Thus	the	AC	has	a	mantissa	whose	sign	is	in
As,	and	a	magnitude	that	is	in	A.	The	diagram	shows	the	most	significant	bit	of	A,	labeled	by	A1.	The	bit	in	his	position	must	be	a	1	to	normalize	the	number.	Note	that	the	symbol	AC	represents	the	entire	register,	that	is,	the	concatenation	of	As,	A	and	a.	In	the	similar	way,	register	BR	is	subdivided	into	Bs,	B,	and	b	and	QR	into	Qs,	Q	and	q.	A	parallel-
adder	adds	the	two	mantissas	and	loads	the	sum	into	A	and	the	carry	into	E.	A	separate	parallel	adder	can	be	used	for	the	exponents.	The	exponents	do	not	have	a	district	sign	bit	because	they	are	biased	but	are	represented	as	a	biased	positive	quantity.	It	is	assumed	that	the	floating-point	number	are	so	large	that	the	chance	of	an	exponent	overflow
is	very	remote	and	so	the	exponent	overflow	will	be	neglected.	The	exponents	are	also	connected	to	a	magnitude	comparator	that	provides	three	binary	outputs	to	indicate	their	relative	magnitude.	50.	Paper	Name:	Computer	Organization	and	Architecture	The	number	in	the	mantissa	will	be	taken	as	a	fraction,	so	they	binary	point	is	assumed	to
reside	to	the	left	of	the	magnitude	part.	Integer	representation	for	floating	point	causes	certain	scaling	problems	during	multiplication	and	division.	To	avoid	these	problems,	we	adopt	a	fraction	representation.	The	numbers	in	the	registers	should	initially	be	normalized.	After	each	arithmetic	operation,	the	result	will	be	normalized.	Thus	all	floating-
point	operands	are	always	normalized.	3.4.1.2	Addition	and	Subtraction	of	Floating	Point	Numbers	During	addition	or	subtraction,	the	two	floating-point	operands	are	kept	in	AC	and	BR.	The	sum	or	difference	is	formed	in	the	AC.	The	algorithm	can	be	divided	into	four	consecutive	parts:	1.	Check	for	zeros.	2.	Align	the	mantissas.	3.	Add	or	subtract	the
mantissas	4.	Normalize	the	result	A	floating-point	number	cannot	be	normalized,	if	it	is	0.	If	this	number	is	used	for	computation,	the	result	may	also	be	zero.	Instead	of	checking	for	zeros	during	the	normalization	process	we	check	for	zeros	at	the	beginning	and	terminate	the	process	if	necessary.	The	alignment	of	the	mantissas	must	be	carried	out
prior	to	their	operation.	After	the	mantissas	are	added	or	subtracted,	the	result	may	be	un-normalized.	The	normalization	procedure	ensures	that	the	result	is	normalized	before	it	is	transferred	to	memory.	For	adding	or	subtracting	two	floating-point	binary	numbers,	if	BR	is	equal	to	zero,	the	operation	is	stopped,	with	the	value	in	the	AC	being	the
result.	If	AC	=	0,	we	transfer	the	content	of	BR	into	AC	and	also	complement	its	sign	we	have	to	subtract	the	numbers.	If	neither	number	is	equal	it	to	zero,	we	proceed	to	align	the	mantissas.	The	magnitude	comparator	attached	to	exponents	a	and	b	gives	three	outputs,	which	show	their	relative	magnitudes.	If	the	two	exponents	are	equal,	we	go	to
perform	the	arithmetic	operation.	If	the	exponents	are	not	equal,	the	mantissa	having	the	smaller	exponent	is	shifted	to	the	right	and	its	exponent	incremented.	This	process	is	repeated	until	two	exponents	are	equal.	The	addition	and	subtraction	of	the	two	mantissas	is	similar	to	the	fixed-point	addition	and	subtraction	algorithm	presented	in	Fig.	4.14.
The	magnitude	part	is	added	or	subtracted	depends	on	the	operation	and	the	signs	of	the	two	mantissas.	If	an	overflow	occurs	when	the	magnitudes	are	added,	it	is	transferred	into	flip-flop	E.	If	E	=	1,	the	bit	is	transferred	into	A1	and	all	other	bits	of	A	are	shifted	right.	The	exponent	must	be	51.	Paper	Name:	Computer	Organization	and	Architecture
incremented	so	that	it	can	maintain	the	correct	number.	No	underflow	may	occur	in	this	case	this	is	because	the	original	mantissa	that	was	not	shifted	during	the	alignment	was	already	in	a	normalized	position.	If	the	magnitudes	were	subtracted,	there	may	be	zero	or	may	have	an	underflow	in	the	result.	If	the	mantissa	is	equal	to	zero	the	entire
floating-point	number	in	the	AC	is	cleared	to	zero.	Otherwise,	the	mantissa	must	have	at	least	one	bit	that	is	equal	to	1.	The	mantissa	has	an	underflow	if	the	most	significant	bit	in	position	A1,	is	0.	In	that	case,	the	mantissa	is	shifted	left	and	the	exponent	decremented.	The	bit	in	A1	is	checked	again	and	the	process	is	repeated	until	A1	=	1.	When	A1
=	1,	the	mantissa	is	normalized	and	the	operation	is	completed.	Figure	Addition	and	Subtraction	of	floating	–point	numbers	52.	Paper	Name:	Computer	Organization	and	Architecture	3.4.2	Decimal	Arithmetic	operations	Decimal	Arithmetic	Unit	The	user	of	a	computer	input	data	in	decimal	numbers	and	receives	output	in	decimal	form.	But	a	CPU	with
an	ALU	can	perform	arithmetic	micro-operations	only	on	binary	data.	To	perform	arithmetic	operations	with	decimal	data,	it	is	necessary	to	convert	the	input	decimal	numbers	to	binary,	to	perform	all	calculations	with	binary	numbers,	and	to	convert	the	results	into	decimal.	This	may	be	an	efficient	method	in	applications	requiring	a	large	number	of
calculations	and	a	relatively	smaller	amount	of	input	and	output	data.	When	the	application	calls	for	a	large	amount	of	input-output	and	a	relatively	smaller	number	of	arithmetic	calculations,	it	becomes	convenient	to	do	the	internal	arithmetic	directly	with	the	decimal	numbers.	Computers	that	can	do	decimal	arithmetic	must	store	the	decimal	data	in
binary	coded	form.	The	decimal	numbers	are	then	applied	to	a	decimal	arithmetic	unit,	which	can	execute	decimal	arithmetic	micro-	operations.	Electronic	calculators	invariably	use	an	internal	decimal	arithmetic	unit	since	inputs	and	outputs	are	frequent.	There	does	not	seem	to	be	a	reason	for	converting	the	keyboard	input	numbers	to	binary	and
again	converting	the	displayed	results	to	decimal,	this	is	because	this	process	needs	special	circuits	and	also	takes	a	longer	time	to	execute.	Many	computers	have	hardware	for	arithmetic	calculations	with	both	binary	and	decimal	data.	Users	can	specify	by	programmed	instructions	whether	they	want	the	computer	to	does	calculations	with	binary	or
decimal	data.	A	decimal	arithmetic	unit	is	a	digital	function	that	does	decimal	micro-operations.	It	can	add	or	subtract	decimal	numbers.	The	unit	needs	coded	decimal	numbers	and	produces	results	in	the	same	adopted	binary	code.	A	single-stage	decimal	arithmetic	unit	has	of	nine	binary	input	variables	and	five	binary	output	variables,	since	a
minimum	of	four	bits	is	required	to	represent	each	coded	decimal	digit.	Each	stage	must	have	four	inputs	for	the	addend	digit,	four	inputs	for	the	addend	digit,	and	an	input-carry.	The	outputs	need	four	terminals	for	the	sum	digit	and	one	for	the	output-	carry.	Of	course,	there	is	a	wide	range	of	possible	circuit	configurations	dependent	on	the	code
used	to	represent	the	decimal	digits.	3.4.2.1	BCD	Adder	Now	let	us	see	the	arithmetic	addition	of	two	decimal	digits	in	BCD,	with	a	possible	carry	from	a	previous	stage.	Since	each	input	digit	does	not	exceed	9,	the	output	sum	53.	Paper	Name:	Computer	Organization	and	Architecture	cannot	be	greater	than	9	+	9	+	1	=	19,	the	1	in	the	sum	being	an
input-carry.	Assume	that	we	apply	two	BCD	digits	to	a	4-bit	binary	adder.	The	adder	will	form	the	sum	in	binary	and	produce	a	result	that	may	range	from	0	to	19.	These	binary	numbers	are	listed	in	Table	4.4	and	are	labeled	by	symbols	K,	Z8,	Z4,	Z2,	and	Z1.	K	is	the	carry	and	the	subscripts	under	the	letter	Z	represent	the	weights	8,	4,	2,	and	1	that
can	be	assigned	to	the	four	its	in	the	BCD	code.	The	first	column	in	the	table	lists	the	binary	sums	as	they	appear	in	the	outputs	of	a	4-bit	binary	adder.	The	output	sum	of	two	decimal	numbers	must	be	represented	in	BCD	and	should	appear	in	the	form	listed	in	the	second	column	of	the	table.	The	problem	is	to	find	a	simple	rule	by	which	the	binary
column	of	the	table.	The	problem	is	to	find	a	simple	rule	so	that	the	binary	number	in	the	first	column	can	be	converted	to	the	correct	BCD	digit	representation	of	the	number	in	the	second	column.	It	is	apparent	that	when	the	binary	sum	is	equal	to	or	less	than	1001,	no	conversion	is	needed.	When	the	binary	sum	is	greater	than	1001,	we	need	to	add
of	binary	6	(0110)	to	the	binary	sum	to	find	the	correct	BCD	representation	and	to	produces	output-carry	as	required.	Table	4.4:	Derivation	of	BCD	Adder	One	way	of	adding	decimal	numbers	in	BCD	is	to	use	one	4-bit	binary	adder	and	perform	the	arithmetic	operation	one	digit	at	a	time.	The	low-order	pair	of	BCD	digits	is	first	added	to	produce	a
binary	sum	if	the	result	is	equal	or	greater	than	1010,	it	is	corrected	by	adding	0110	to	the	binary	sum.	The	second	operation	produces	an	output-	carry	for	the	next	pair	of	significant	digits.	The	next	higher-order	pair	of	digits,	together	with	the	input-carry,	is	then	added	to	produce	their	binary	sum.	If	this	result	is	equal	54.	Paper	Name:	Computer
Organization	and	Architecture	to	or	greater	than	1010,	it	is	corrected	by	adding	0110.	The	procedure	is	repeated	until	all	decimal	digits	are	added.	The	logic	circuit	that	detects	the	necessary	correction	can	be	derived	from	the	table	entries.	It	is	obvious	that	a	correction	is	needed	when	the	binary	sum	has	an	output	carry	K	=	1.	The	other	six
combinations	from	1010	to	1111	that	need	a	correction	have	a	1	in	position	Z8.	To	differentiate	them	from	binary	1000	and	1001,	which	also	have	a	1	in	position	Z8,	we	specify	further	that	either	Z4	or	Z2	must	have	a	1.	The	condition	for	a	correction	and	an	output-carry	can	be	expressed	by	the	Boolean	function	C	=	K	+	Z8	Z4	+	Z8	Z2	When	C	=	1,
we	need	to	add	0110	to	the	binary	sum	and	provide	an	output-carry	for	the	next	stage.	A	BCD	adder	is	circuit	that	adds	two	BCD	digits	in	parallel	and	generates	a	sum	digit	also	in	BCD.	ABCD	adder	must	include	the	correction	logic	in	its	internal	construction.	To	add	0110	to	the	binary	sum,	we	use	a	second	4-bit	binary	adder.	The	two	decimal	digits,
together	with	the	input-carry,	are	first	added	in	the	top	4-bit	binary	adder	to	produce	the	binary	sum.	When	the	output-carry	is	equal	to	0,	nothing	is	added	to	the	binary	sum	through	the	bottom	4-bit	binary	adder.	The	output-carry	generated	from	the	bottom	binary	adder	may	be	ignored,	since	it	supplies	information	already	available	in	the	output-
carry	terminal.	Figure	4.17:	Block	Diagram	of	BCD	Adder	3.4.2.2	BCD	Subtraction	55.	Paper	Name:	Computer	Organization	and	Architecture	Subtraction	of	two	decimal	numbers	needs	a	subtractor	circuit	that	is	different	from	a	BCD	adder.	We	perform	the	subtraction	by	taking	the	9’s	or	10’s	complement	of	the	subtrahend	and	adding	it	to	the
minuend.	Since	the	BCD	is	not	a	self-complementing	code,	we	cannot	obtain	the	9’s	complement	by	complementing	each	bit	in	the	code.	It	must	be	formed	using	a	circuit	that	subtracts	each	BCD	digit	from	9.	The	9’s	complement	of	a	decimal	digit	represented	in	BCD	may	be	obtained	by	complementing	the	bits	in	the	coded	representation	of	the	digit
but	we	have	to	include.	There	are	two	possible	correction	methods.	In	the	first	method,	binary	1010	(decimal	10)	is	added	to	each	complemented	digit	then	we	discard	the	carry	after	each	addition.	In	the	second	method,	binary	0110	(decimal	6)	is	added	before	the	digit	is	complemented.	As	a	numerical	illustration,	the	9’s	complement	of	BCD
0111(decimal	7)	is	computed	by	first	complementing	each	bit	to	obtain	1000.	Adding	binary	1010	and	discarding	the	carry,	we	obtain	0010	(decimal	2).	By	the	second	method,	we	add	0110	to	0111	to	obtain	1101.	Complementing	each	bit,	we	obtain	the	required	result	of	0010.	Complementing	each	bit	of	4-bit	binary	number	N	is	identical	to	the
subtraction	of	the	number	from	1111	(decimal	15).	Adding	the	binary	equivalent	of	decimal	10	gives	15	–	N	+	10	=	9	+	16.	But	16	signifies	the	carry	that	is	discarded,	so	the	result	is	9	–	N	as	required.	Adding	the	binary	equivalent	of	decimal	6	and	then	complementing	gives	15	–	(N	+	6)	=	9	–	N	as	required.	We	can	also	obtain	the	9’s	complement	of	a
BCD	digit	through	a	combinational	circuit.	When	this	circuit	is	combined	to	a	BCD	adder,	we	get	a	BCD	adder/subtractor.	Let	the	subtrahend	(or	addend)	digit	be	denoted	by	the	four	binary	variables	B8,	B4,	B2,	and	B1.	Let	M	be	a	mode	bit	that	controls	the	add/subtract	operation.	When	M	=	0,	the	two	digits	are	added;	when	M	=	1,	the	digits	are
subtracted.	Let	the	binary	variables	x8,	x4,	x2,	and	x1	be	the	outputs	of	the	9’s	complement	circuit.	By	an	examination	of	the	truth	table	for	the	circuit,	it	may	be	observed	that	B1	should	always	be	complemented;	B2	is	always	the	same	in	the	9’s	complement	as	in	the	original	digit;	x4	is	1	when	the	exclusive	OR	of	B2	and	B4	is	1;	and	x8	is	1	when
B8B4B2	=	000.	The	Boolean	functions	for	the	9’s	complement	circuit	are	x1	=	B1	M’	+	B’1	M	x2	=	B2	x4	=	B4M’	+	(B’4B2	+	B4B’2)M	x8	=	B8M’	+	B’8B4’B’2M	From	these	equations	we	see	that	x	=	B	when	M	=	0.	When	M	=	1,	the	x	equals	to	the	9’s	complement	of	B.	One	stage	of	a	decimal	arithmetic	unit	that	can	be	used	to	add	or	subtract	two
BCD	digits	is	given	in	Fig.	4.18.	It	has	of	a	BCD	adder	and	a	9’s	complementer.	The	mode	M	controls	the	operation	of	the	unit.	With	M	=	0,	the	S	outputs	form	the	sum	of	A	and	B.	With	M	=	1,	the	S	outputs	form	the	sum	of	A	plus	the	9’s	complement	of	B.	For	numbers	with	n	decimal	digits	we	need	n	such	stages.	The	output	carries	Ci+1	from	one
stage.	to	subtract	the	two	decimal	numbers	let	M	=	1	and	apply	a	1	to	the	input	carry	56.	Paper	Name:	Computer	Organization	and	Architecture	C1	of	the	first	stage.	The	outputs	will	form	the	sum	of	A	plus	the	10’s	complement	of	B,	which	is	equivalent	to	a	subtraction	operation	if	the	carry-out	of	the	last	stage	is	discarded.	One	Stage	of	a	decimal
arithmetic	unit	57.	Paper	Name:	Computer	Organization	and	Architecture	UNIT	4	PROGRAMMING	THE	BASIC	COMPUTER	4.1	Machine	language	4.2	Assembly	language	4.3	Assembler	4.3.1	First	pass	4.3.2	Second	pass	4.4	Programming	Arithmetic	and	Logic	operations	4.5	Multiplication	Program	4.5.1	Double-Precision	Addition	4.5.2	Logic
operations	4.5.3	Shift	operations	4.1	Machine	Language	To	write	a	program	for	a	computer	we	need	to	specify,	directly	or	indirectly,	a	sequence	of	machine	instructions.	Machine	instructions	inside	the	computer	form	a	binary	pattern,	which	is	difficult	to	understand	and	manipulate.	The	instruction	set	of	the	basic	computer,	whose	hardware
organization	was	explored	earlier	used	to	program	a	computer.	The	25	instructions	of	the	basic	computer	are	in	Table	2.5	to	provide	an	easy	reference	for	the	programming	examples	that	follow.	Table	2.5:	Computer	Instructions	Symbol	Hexadecimal	code	Description	AND	0	or	8	AND	M	to	AC	ADD	1	or	9	Add	M	to	AC,	carry	to	E	LDA	2	or	A	Load	AC
from	M	STA	3	or	B	Store	AC	in	M	BUN	4	or	C	Branch	unconditionally	to	m	BSA	5	or	D	Save	return	address	in	m	and	branch	to	m+1	ISZ	6	or	E	Increment	M	and	skip	if	zero	CLA	7800	Clear	AC	CLE	7400	Clear	E	CMA	7200	Complement	AC	CME	7100	Complement	E	CIR	7080	Circulate	right	E	and	AC	CIL	7040	Circulate	left	E	and	AC	INC	7020
Increment	AC	58.	Paper	Name:	Computer	Organization	and	Architecture	SPA	7010	Skip	if	AC	is	positive	SNA	7008	Skip	if	AC	is	negative	SZA	7004	Skip	if	AC	is	zero	SZE	7002	Skip	if	E	is	zero	HLT	7001	Halt	computer	INP	F800	Input	information	and	clear	flag	OUT	F400	Output	information	and	clear	flag	SKI	F200	Skip	if	input	flag	is	on	SKO	F100
Skip	if	output	flag	is	on	ION	F080	Turn	interrupt	on	IOF	F040	Turn	interrupt	off	A	program	is	a	list	of	instructions	to	tell	the	computer	to	do	needed	processing	on	the	data.	We	can	write	a	program	for	a	computer	in	various	types	of	programming	languages,	but	this	program	can	be	executed	by	the	computer	only	when	it	is	in	binary	form.	If	it	is
written	in	some	other	language	it	has	to	be	translated	to	the	binary	form	so	that	it	can	be	executed	by	the	computer.	A	symbolic	instruction	and	its	binary	equivalent	has	a	one-to-one	relationship	between	them.	An	assembly	language	can	be	thought	of	a	machine	level	language	writing	16	bits	for	each	instruction.	Because	there	are	several	digits,	it
becomes	tedious.	By	writing	the	equivalent	hexadecimal	code,	we	can	reduce	to	four	digits.	We	can	go	one	step	further	and	replace	each	hexadecimal	address	by	a	symbolic	address	and	each	hexadecimal	opened	by	a	decimal	operand.	We	find	it	convenient	because,	we	generally	do	not	know	exactly	the	numeric	memory	location	of	operands	at	the
time	of	writing	a	program.	As	we	know	that	there	is	a	set	of	rules	for	a	programming	language,	we	must	conform	with	all	format	and	rules	of	the	language	if	we	want	our	programs	to	be	translated	correctly.	A	line	of	code	is	the	fundamental	unit	of	an	assembly	language	program.	Table	2.6:	Binary	Program	to	Add	Two	Numbers	Location	Instruction
Code	0	0010	0000	0000	0100	1	0001	0000	0000	0101	10	0011	0000	0000	0110	11	0111	0000	0000	0001	100	0000	0000	0101	0011	101	1111	1111	1110	1001	110	0000	0000	0000	0000	4.2	Assembly	Language	59.	Paper	Name:	Computer	Organization	and	Architecture	As	we	know	that	a	programming	language	is	defined	by	a	set	of	rules.	If	users
want	their	programs	to	be	translated	correctly	they	must	conform	to	all	formats	and	rules	of	the	language.	Every	digital	computer	has	its	own	separate	assembly	language.	The	rules	for	writing	assembly	language	programs	are	available	from	the	computer	manufacturer	in	the	form	of	documents	and	manuals.	A	line	of	code	is	the	fundamental	unit	of
an	assembly	language	program.	The	specific	language	is	defined	by	a	group	of	rules.	This	group	describes	the	symbols	that	can	be	used.	It	also	tells	how	a	line	of	code	can	be	made	from	them.	We	will	now	give	the	rules	to	write	assembly	language	programs	for	the	basic	computer.	Rules	for	the	Assembly	Language	A	line	of	code	of	an	assembly
language	program	is	divided	in	three	columns	called	fields.	The	fields	describe	the	following	information.	1.	The	label:	may	be	empty	or	it	may	specify	a	symbolic	address.	2.	The	instruction:	specifies	a	machine	instruction	or	a	pseudo-instruction.	3.	The	comment:	may	be	empty	or	it	may	include	a	comment.	A	symbolic	address	has	one,	two,	or	three
alphanumeric	characters.	But	it	cannot	have	more	than	three	alphanumeric	characters.	The	first	character	is	an	alphabet;	the	next	two	may	be	alphabets	or	numeric	digits.	We	can	choose	the	symbols	arbitrarily.	A	symbolic	address	in	the	label	field	is	terminated	by	a	comma	to	make	it	a	label.	The	instruction	field	specifies	one	of	the	following	items:
1.	A	memory-reference	instruction	(MRI)	2.	A	register-reference	(i.e.	input-output	instruction)	(non-MRI)	3.	A	pseudo-instruction	with	or	without	an	operand	A	memory-reference	instruction	occupies	two	or	three	symbols.	These	symbols	are	separated	by	spaces.	The	first	must	be	a	three-letter	symbol	defining	an	MRI	operation	code.	The	second	one	is
a	symbolic	address.	The	third	symbol,	which	is	optional,	is	the	letter	I.	It	is	a	direct	address	instruction,	if	I	is	missing	otherwise	it	is	an	indirect	address	instruction.	A	non-MRI	is	an	instruction	that	does	not	have	an	address	part.	A	non-MRI	is	found	in	the	instruction	field	of	a	program	by	any	one	of	the	three-letter	symbols	for	the	register-	reference
and	input-output	instructions.	The	following	is	an	illustration	of	the	symbols	that	may	be	placed	in	the	instruction	field	of	a	program.	CLA	non-MRI	ADD	OPR	direct	address	MRI	ADD	PTR	I	indirect	address	MRI	60.	Paper	Name:	Computer	Organization	and	Architecture	The	first	three-letter	symbol	in	each	line	must	be	one	of	the	instruction	symbols	of
the	computer.	A	memory-reference	instruction,	such	as	MUL,	must	be	followed	by	a	symbolic	address.	The	letter	I	may	or	may	not	be	present.	The	memory	location	of	an	operand	is	determined	by	a	symbolic	address	in	the	instruction	field.	This	location	is	mentioned	somewhere	in	the	program	by	appearing	again	as	a	label	in	the	first	column.	If	we
want	to	translate	program	from	assembly	language	to	a	machine	language,	each	symbolic	address	that	is	mentioned	in	the	instruction	field	must	occur	again	in	the	label	field.	A	pseudo-instruction	is	an	instruction	to	the	assembler	giving	information	about	some	phase	of	the	translation	(it	is	not	a	machine	instruction).	Four	pseudo-instructions	that	are
recognized	by	the	assembler	are	listed	in	Table	2.7.	The	assembler	is	informed	by	the	origin	(ORG)	pseudo-instruction	that	the	instruction	or	operand	in	the	following	line	is	to	be	placed	in	a	memory	location	specified	by	the	number	next	to	ORG.	Table	2.7:	Definition	of	Pseudo-instructions	Symbol	Information	for	the	Assembler	ORG	N	Hexadecimal
number	N	is	the	memory	location	for	the	instruction	or	operand	listed	in	the	following	line	END	Denotes	the	end	of	symbolic	program	DEC	N	Signed	decimal	number	N	to	be	converted	to	binary	HEX	N	Hexadecimal	number	N	to	be	converted	to	binary	To	inform	the	assembler	that	the	program	is	terminated	the	END	symbol	is	placed	at	the	end	of	the
program.	The	radix	is	given	by	the	other	two	pseudo-instructions.	They	also	describe	the	operand	and	tell	the	assembler	how	to	convert	the	listed	number	to	a	binary	one.	We	reserve	the	third	field	in	a	program	for	comments.	A	line	of	code	may	or	may	not	have	a	comment.	But	if	there	is	a	comment,	it	must	be	preceded	by	a	slash	for	the	assembler	to
recognize	the	beginning	of	a	comment	field.	Comments	are	useful	for	explaining	the	program	and	are	helpful	in	understanding	the	step-by-step	procedure	taken	by	the	program.	Comments	are	used	for	explanation	and	are	not	are	neglected	during	the	binary	translation	process.	An	Example	The	program	of	Table	2.8	is	an	example	of	an	assembly
language	program.	The	first	line	has	the	pseudo	instruction	ORG	to	define	the	origin	of	the	program	at	memory	location	(100)16.	The	next	six	lines	define	machine	instructions,	and	the	last	four	have	pseudo-	instructions.	Three	symbolic	addresses	have	been	used	and	each	is	listed	in	column	1	as	a	label	and	in	column	2	as	an	address	of	a	memory-
reference	instruction.	Three	of	61.	Paper	Name:	Computer	Organization	and	Architecture	the	pseudo-instructions	specify	operands,	and	the	last	one	signifies	the	END	of	the	program.	When	the	program	is	converted	into	the	binary	code	and	executed	by	the	computer	it	perform	a	subtraction	between	two	numbers.	We	can	perform	subtraction
operation	by	adding	the	minuend	to	the	2’s	complement	of	the	subtrahend.	We	know	that	subtrahend	is	a	negative	number,	we	convert	it	into	a	binary	number	as	signed	2’s	complement	representation	because	we	dictate	that	all	negatives	numbers	be	in	their	2’s	complement	form.	Thus,	–	23	converts	to	+23	and	the	difference	is	83+	(2’s	complement
of	–23)	=	83+23=106.	Table	2.8:	Language	Program	to	Subtract	Two	Numbers	4.3	Assembler	An	assembler	is	a	program	that	takes	as	input	a	symbolic	language	program	and	produces	as	output	its	binary	machine	language	equivalent.	The	input	is	called	the	source	program	and	the	resulting	binary	program	is	called	the	object	program.	The
assembler	is	a	program	that	operates	on	character	strings	and	produces	an	equivalent	binary	interpretation.	Memory	Representation	of	Symbolic	Program	The	symbolic	program	must	be	stored	in	memory,	before	starting	the	assembly	process.	The	user	writes	the	symbolic	program	on	a	computer.	This	symbolic	program	is	taken	into	memory	with	the
help	of	a	loader	program.	Since	the	program	consists	of	symbols,	its	representation	in	memory	must	use	an	alphanumeric	character	code.	Usually	each	character	is	represented	by	an	8-bit	code,	in	the	basic	computer.	The	high-order	bit	is	always	0	and	the	other	seven	bits	are	as	described	by	ASCII	code.	Table	2.10	gives	the	hexadecimal	equivalent	of
the	character	set.	Each	character	is	given	two	hexadecimal	digits.	So	each	character	can	be	easily	converted	to	their	equivalent	8-bit	code.	The	last	entry	in	the	table	does	not	print	a	character,	it	looks	after	the	physical	movement	of	the	cursor	in	the	terminal.	When	the	return	key	is	depressed,	the	code	for	CR	is	produced.	Therefore	"carriage"	is	goes
to	its	initial	position	and	we	can	start	typing	a	new	line.	We	store	a	line	of	code	in	consecutive	memory	locations.	Two	characters	in	each	location.	Since	a	memory	word	has	a	capacity	of	16	bits	we	can	store	two	characters	62.	Paper	Name:	Computer	Organization	and	Architecture	stored	in	each	word.	A	comma	delimits	a	label	symbol.	Now	we	see
how	the	operation	code	and	addresses	are	terminated.	They	are	terminated	with	a	space	and	the	end	of	the	line	is	recognized	by	the	CR	code.	For	example,	the	following	line	or	code:	PL3,	LDA	SUB	I	is	stored	in	seven	consecutive	memory	locations,	as	shown	in	Table	2.11.	The	label	PL3	occupies	two	words	and	is	terminated	by	the	code	for	comma
(2C).	The	instruction	field	in	the	line	of	code	may	have	one	or	more	symbols.	Each	symbol	is	terminated	by	the	code	for	space	(20)	except	for	the	last	symbol,	which	is	terminated	by	the	code	of	carriage	return	(0D).	If	the	line	of	code	has	a	comment,	the	assembler	recognizes	it	by	the	code	for	a	slash	(2F).	The	assembler	neglects	all	characters	in	the
comment	field	and	keeps	checking	for	a	CR	code.	When	this	code	is	encountered,	it	replaces	the	space	code	after	the	last	symbol	in	the	line	of	code.	Table	2.10:	Hexadecimal	Character	Code	Table	2.11:	Computer	Representation	of	the	line	of	code:	PL3,	LDA	SUB	I	The	user’s	symbolic	language	program	in	ASCII	is	input	for	the	assembler	program.
The	assembler	scans	this	input	twice	to	produce	the	equivalent	binary	program.	The	binary	program	constitutes	the	output	generated	by	the	assembler.	We	will	now	describe	63.	Paper	Name:	Computer	Organization	and	Architecture	briefly	the	major	tasks	that	must	be	performed	by	the	assembler	during	the	translation	process.	4.3.1	First	Pass	Entire
symbolic	program	is	scanned	by	a	two-pass	assembler	twice.	After	the	first	pass,	it	generates	a	table	that	correlates	all	user-defined	symbols	with	their	equivalent	value	in	binary.	The	binary	translation	is	done	during	the	second	pass.	To	keep	track	of	the	location	of	instructions,	the	assembler	uses	a	memory	word	called	a	location	counter	(abbreviated
LC).	The	content	of	LC	stores	the	value	of	the	memory	location	assigned	to	the	instruction	or	operand	presently	being	processed.	The	ORG	pseudo-instruction	initializes	the	location	counter	to	the	value	of	the	first	location.	Since	instructions	are	stored	in	sequential	locations,	the	content	of	LC	is	incremented	by	1	after	processing	each	line	of	code.	To
avoid	ambiguity	in	case	ORG	is	missing,	the	assembler	sets	the	location	counter	to	0	initially.	Figure	2.9:	Flowchart	for	first	pass	of	assembler	The	flowchart	of	Fig.	2.9	describes	the	tasks	performed	by	the	assembler	during	the	first	pass.	LC	is	initially	set	to	0.	A	line	of	symbolic	code	is	analyzed	to	determine	if	it	has	a	label	(by	the	presence	of	a
comma).	If	the	line	of	code	has	no	label,	the	assembler	checks	the	symbol	in	the	instruction	field.	If	it	contains	an	ORG	pseudo-instruction,	the	assembler	sets	LC	to	the	number	that	follows	ORG	and	goes	back	to	process	the	next	64.	Paper	Name:	Computer	Organization	and	Architecture	line.	If	the	line	has	an	END	pseudo-instruction,	the	assembler
terminates	the	first	pass	and	goes	to	the	second	pass.	(Note	that	a	line	with	ORG	or	END	should	not	have	a	label.)	If	the	line	of	code	contains	a	label,	it	is	stored	in	the	address	symbol	table	together	with	its	binary	equivalent	number	specified	by	the	content	of	LC.	Nothing	stored	in	the	table	if	no	label	is	encountered.	LC	is	then	incremented	by	1	and	a
new	line	of	code	is	processed.	The	assembler	generates	the	address	symbol	table	listed	in	Table	2.12,	for	the	program	to	Table	2.8.	We	store	each	label	symbol	in	two	memory	locations	and	terminate	it	by	a	comma.	If	the	label	contains	less	than	three	characters,	the	memory	locations	are	filled	with	the	code	for	space.	The	value	found	in	LC	while	the
line	was	processed	is	stored	in	the	next	sequential	memory	location.	The	program	has	three	symbolic	addresses:	MIN,	SUB,	and	DIF.	These	symbols	represent	12-bit	addresses	equivalent	to	hexadecimal	106	107	and	108,	respectively.	The	address	symbol	table	occupies	three	words	for	each	label	symbol	encountered	and	constitutes	the	output	data
that	the	assembler	generates	during	the	first	pass.	Table	2.12	*	(LC)	designates	content	of	location	counter.	4.3.2	Second	Pass	With	the	help	of	table-lookup	procedures,	machine	instructions	are	translated	during	the	second	pass.	A	take-lookup	procedure	is	a	search	of	table	entries	to	find	whether	a	specific	item	matches	one	of	the	items	stored	in	the
table.	The	assembler	uses	four	tables.	Any	symbol	that	is	encountered	in	the	program	must	be	available	as	an	entry	in	one	of	these	tables;	otherwise,	the	symbol	cannot	be	interpreted.	We	assign	the	following	names	to	the	four	tables:	1.	Pseudo-instruction	table.	2.	MRI	table.	3.	Non-MRI	table.	4.	Address	symbol	table.	65.	Paper	Name:	Computer
Organization	and	Architecture	The	pseudo-instruction	table	has	the	four	symbols	ORG,	END,	DEC,	and	HEX.	Each	symbol	refers	the	assembler	to	a	subroutine	that	processes	the	pseudo-instruction	when	encountered	in	the	program.	The	MRI	table	has	the	seven	symbols	of	the	memory-	reference	instructions	and	their	3-bit	operation	code	equivalent.
The	non-MRI	table	has	the	symbols	for	the	18	register-reference	and	input-output	instructions	and	their	16-bit	binary	code	equivalent.	In	the	first	pass	the	address	symbol	table	is	created.	In	order	to	determine	its	binary	value,	the	assembler	searches	these	tables	to	find	the	symbol	that	it	is	currently	processing.	The	tasks	performed	by	the	assembler
during	the	second	pass	are	described	in	the	flowchart	of	Fig.	2.10.	LC	is	initially	set	to	0.	Lines	of	code	are	then	analyzed	one	at	a	time.	Labels	are	neglected	during	the	second	pass,	so	the	assembler	goes	immediately	to	the	instruction	field	and	proceeds	to	check	the	first	symbol	encountered.	It	first	checks	the	pseudo-instruction	table.	A	match	with
ORG	sends	the	assembler	to	a	subroutine	that	sets	LC	to	an	initial	value.	A	match	with	END	terminates	the	translation	process.	An	operand	is	placed	in	the	memory	location	specified	by	the	content	of	LC.	The	location	counter	is	then	incremented	by	1	and	the	assembler	continues	to	analyze	the	next	line	of	code.	66.	Paper	Name:	Computer
Organization	and	Architecture	Figure	2.10:	Flochart	for	second	pass	of	assembler	If	the	symbol	obtained	is	not	a	pseudo-instruction,	the	assembler	goes	to	the	MRI	table.	The	assembler	refers	to	the	non-MRI	table	if	the	symbol	is	not	found	in	MEI	table.	A	symbol	found	in	the	non-MRI	table	corresponds	to	a	register	reference	or	input-output
instruction.	The	assembler	stores	the	16-bit	instruction	code	into	the	memory	word	designated	by	LC.	The	location	counter	is	incremented	and	a	new	line	analyzed.	When	we	get	a	symbol	in	the	MRI	table,	the	assembler	extracts	its	equivalent	3-bit	code	and	inserts	it	in	bits	2	through	4	of	a	word.	A	memory	reference	instruction	is	designated	by	two	or
three	symbols.	The	second	symbol	is	a	symbolic	address	and	the	third,	which	may	or	may	not	be	present,	is	the	letter	I.	By	searching	the	address	symbol	67.	Paper	Name:	Computer	Organization	and	Architecture	table	the	symbolic	address	is	converted	to	binary.	The	first	bit	of	the	instruction	is	set	to	0	or	1,	depending	on	whether	the	letter	I	is	absent
or	present.	The	three	parts	of	the	binary	instruction	code	are	assembled	and	then	stored	in	the	memory	location	specified	by	the	content	of	LC.	The	location	counter	is	incremented	and	the	assembler	continues	to	process	the	next	line.	An	important	job	of	the	assembler	is	to	check	for	possible	errors.	We	can	call	it	“error	diagnostics”.	One	example	of
such	an	error	may	be	an	invalid	machine	code	symbol	which	is	detected	by	its	being	absent	in	the	MRI	and	non-MRI	tables.	The	assembler	is	unable	to	translate	such	a	symbol	because	it	does	not	know	its	binary	equivalent	value.	In	such	a	case,	the	assembler	prints	an	error	message	to	inform	the	programmer	that	his	symbolic	program	has	an	error	at
a	specific	line	of	code.	Another	possible	error	may	occur	if	the	program	has	a	symbolic	address	that	did	not	appear	also	as	a	label.	The	assembler	cannot	translate	the	line	of	code	properly	because	the	binary	equivalent	of	the	symbol	will	not	be	found	in	the	address	symbol	table	generated	during	the	first	pass.	Other	errors	may	occur	and	a	practical
assembler	should	detect	all	such	errors	and	print	an	error	message	for	each.	4.4	Programming	Arithmetic	and	Logic	Operations	In	a	large	system	the	number	of	instructions	available	in	a	computer	may	be	a	few	hundred	or	a	few	dozen	in	a	small	one.	Some	computers	execute	a	given	operation	with	one	machine	instruction;	some	may	require	many
machine	instructions	to	perform	the	same	operation.	For	example,	consider	the	four	basic	arithmetic	operations.	Some	computers	have	machine	instructions	to	add,	subtract,	multiply,	and	divide.	Others,	such	as	the	basic	computer,	have	only	one	arithmetic	instruction,	such	as	ADD.	A	program	must	implement	operations	not	included	in	the	set	of
machine	instructions.	We	have	shown	in	Table	2.8	a	program	for	subtracting	two	numbers.	Programs	for	the	other	arithmetic	operations	can	be	developed	in	a	similar	fashion.	If	operations	are	implemented	in	a	computer	with	one	machine	instruction,	then	it	is	said	to	be	implemented	by	hardware.	Operations	implemented	by	a	set	of	instructions	that
form	a	program	are	said	to	be	implemented	by	software.	Some	computers	provide	an	extensive	set	of	hardware	instructions	designed	so	that	common	tasks	can	be	performed	efficiently.	Others	contain	a	smaller	set	of	hardware	instructions	and	depend	more	heavily	on	the	software	implementation	of	many	operations.	Hardware	implementation	is
more	costly	because	of	the	additional	circuits	needed	to	implement	the	operation.	Software	implementation	results	in	long	programs	both	in	number	of	instructions	and	in	execution	time.	68.	Paper	Name:	Computer	Organization	and	Architecture	4.5	Multiplication	Program	We	use	the	conventional	method	of	multiplying	two	numbers	to	write	the
program	for	multiplying	two	numbers.	As	shown	in	the	example	of	Fig.	2.11,	the	multiplication	process	consists	of	checking	the	bits	of	the	multiplier	Y	and	adding	the	multiplicand	X	as	many	times	as	there	are	1's	in	Y,	provided	that	the	value	of	X	is	shifted	left	from	one	line	to	the	next.	Since	the	computer	can	add	only	two	numbers	at	a	time,	we
reserve	a	memory	location,	denoted	by	P,	to	store	intermediate	sums.	The	intermediate	sums	are	called	partial	products	since	they	hold	a	partial	product	until	all	numbers	are	added.	As	shown	in	the	numerical	example	under	P,	the	partial	product	starts	with	zero.	The	multiplicand	X	is	added	to	the	content	of	P	for	each	bit	of	the	multiplier	Y	that	is	1.
The	value	of	X	is	shifted	left	after	checking	each	bit	of	the	multiplier.	The	final	value	in	P	forms	the	product.	The	example	has	numbers	with	four	significant	bits.	When	multiplied,	the	product	contains	eight	significant	bits.	The	computer	can	use	numbers	with	eight	significant	bits	to	produce	a	product	of	up	to	16	bits.	The	flowchart	of	Fig.	2.11	shows
the	step-by-step	procedure	for	programming	the	multiplication	operation.	The	program	has	a	loop	that	is	traversed	eight	times,	once	for	each	significant	bit	of	the	multiplier.	Initially,	location	X	holds	the	multiplicand	and	location	Y	holds	the	multiplier.	A	counter	CTR	is	set	to	-8	and	location	P	is	cleared	to	zero.	69.	Paper	Name:	Computer	Organization
and	Architecture	Figure	2.11:	Flowchart	for	multiplication	program	We	can	check	multiplier	bit	if	it	is	transferred	to	the	E	register.	We	do	this	by	clearing	E,	loading	the	value	of	Y	into	the	AC,	circulating	right	E	and	AC	and	storing	the	shifted	number	back	into	location	Y.	This	bit	stored	in	E	is	the	low-order	bit	of	the	multiplier.	We	now	check	the
value	of	E.	If	it	is	1,	the	multiplicand	X	is	added	to	the	partial	product	P.	If	it	is	0,	the	partial	product	does	not	change.	We	then	shift	the	value	of	X	once	to	the	left	by	loading	it	into	the	AC	and	circulating	left	E	and	AC.	The	loop	is	executed	eight	times	by	incrementing	location	CTR	and	checking	when	it	reaches	zero.	When	the	counter	reaches	zero,	the
program	exits	from	the	loop	with	the	product	stored	in	location	P.	The	program	in	Table	2.14	gives	the	instructions	for	multiplication	of	two	unsigned	numbers.	The	initialization	is	not	listed	but	should	be	included	when	the	program	is	70.	Paper	Name:	Computer	Organization	and	Architecture	loaded	into	the	computer.	The	initialization	consists	of
bringing	the	multiplicand	and	multiplier	into	locations	X	and	Y,	respectively;	initializing	the	counter	to	-8;	and	initializing	location	P	to	zero.	Table	2.14:	Program	to	Multiply	Two	Positive	Numbers	4.5.1	Double-Precision	Addition	When	we	multiply	two	16-bit	unsigned	numbers,	the	result	is	a	32-bit	product	and	it	must	be	stored	in	two	memory	words.
A	number	is	said	to	have	double	precision	if	it	is	stored	in	two	memory	words.	When	a	partial	product	is	computed,	it	is	necessary	that	a	double-precision	number	be	added	to	the	shifted	multiplicand,	which	is	also	a	double-	precision	number.	For	greater	accuracy,	the	programmer	may	wish	to	employ	double-	precision	numbers	and	perform	arithmetic
with	operands	that	occupy	two	memory	words.	We	now	develop	a	program	that	adds	two	double-precision	numbers.	We	place	one	of	the	double-precision	numbers	in	two	consecutive	memory	locations,	AL	and	AH,	with	AL	holding	the	16	low-order	bits.	The	second	number	is	placed	in	BL	and	BH.	The	program	is	listed	in	Table	2.15.	The	two	low-order
portions	are	added	and	the	carry	transferred	into	E.	The	AC	is	cleared	and	the	bit	in	E	is	circulated	into	the	least	significant	position	of	the	AC.	The	two	high-order	portions	are	then	added	to	the	carry	and	the	double-precision	sum	is	stored	in	CL	and	CH.	Table	2.15:	Program	to	Add	Two	Double-Precision	Numbers	71.	Paper	Name:	Computer
Organization	and	Architecture	4.5.2	Logic	Operations	To	perform	logic	operations:	AND,	CMA,	and	CLA,	a	basic	computer	has	three	machine	instructions.	The	LDA	instruction	is	considered	as	a	logic	operation	that	transfers	a	logic	operand	into	the	AC.	We	listed	16	different	logic	operations	earlier,	similarly	all	16	logic	operations	can	be	implemented
by	software	means	because	any	logic	function	can	be	implemented	using	the	AND	and	complement	operations.	For	example,	the	OR	operation	is	not	available	as	a	machine	instruction	in	the	basic	computer.	From	DeMorgan's	theorem	we	recognize	the	relation	x	+	y	=	(x'y')'.	The	second	expression	contains	only	AND	and	complement	operations.	A
program	that	forms	the	OR	operation	of	two	logic	operands	A	and	B	is	as	follows:	The	other	logic	operations	can	be	implemented	by	software	in	a	similar	fashion.	4.5.3	Shift	Operations	In	a	basic	computer,	the	circular-shift	operations	are	machine	instructions.	The	other	interesting	shifts	are	the	logical	shifts	and	arithmetic	shifts.	We	can	program
these	two	shifts	with	a	small	number	of	instructions.	To	perform	the	logical	shift	requires	zeros	are	added	to	the	extreme	positions.	This	can	be	easily	accomplished	by	clearing	E	and	circulating	the	AC	and	E.	Thus	for	a	logical	shift-right	operation	we	need	the	two	instructions	CLE	CIR	72.	Paper	Name:	Computer	Organization	and	Architecture	For	a
logical	shift-left	operation	we	need	the	two	instructions	CLE	CIL	The	arithmetic	shifts	depend	on	the	type	of	representation	of	negative	numbers.	We	adopt	the	signed-2's	complement	representation	for	the	basic	computer.	For	an	arithmetic	right-shift	it	is	necessary	that	the	sign	bit	in	the	leftmost	position	remain	unchanged.	But	the	sign	bit	itself	is
shifted	into	the	high-order	bit	position	of	the	number.	The	program	for	the	arithmetic	right-shift	requires	that	we	set	E	to	the	same	value	as	the	sign	bit	and	circulate	right,	thus:	it	is	necessary	for	arithmetic	shift-left	that	the	added	bit	in	the	least	significant	position	be	0.	This	can	be	done	easily	by	clearing	E	prior	to	the	circulate-left	operation.	The
sign	bit	remains	same	during	this	shift.	With	a	circulate	instruction,	the	sign	bit	moves	into	E.	It	is	then	necessary	to	compare	the	sign	bit	with	the	value	of	E	after	the	operation.	If	the	two	values	are	equal,	the	arithmetic	shift	has	been	correctly	performed.	If	they	are	not	equal,	an	overflow	occurs.	An	overflow	shows	that	the	unshifted	number	was	too
large.	When	multiplied	by	2	(by	means	of	the	shift),	the	number	so	obtained	exceeds	the	capacity	of	the	AC.	73.	Paper	Name:	Computer	Organization	and	Architecture	UNIT	5	CENTRAL	PROGRESSING	UNIT	(CPU)	5.1	Stack	organization	5.1.1	Register	stack	5.1.2	Memory	stack	5.1.3	Reverse	polish	notation	5.2	Instruction	Formats	5.2.1	Three-
address	Instructions	5.2.2	Two	–	address	instructions	5.2.3	One-	address	instructions	5.2.4	Zero-address	instructions	5.2.5	RISC	Instructions	5.3	Addressing	Modes	5.4	Reduced	Instruction	Set	Computer	5.4.1	CISC	characteristics	5.4.2	RISC	characteristics	5.1	Stack	Organization	The	CPU	of	most	computers	comprises	of	a	stack	or	last-in-first-out
(LIFO)	list	wherein	information	is	stored	in	such	a	manner	that	the	item	stored	last	is	the	first	to	be	retrieved.	The	operation	of	a	stack	can	be	compared	to	a	stack	of	trays.	The	last	tray	placed	on	top	of	the	stack	is	the	first	to	be	taken	off.	The	stack	in	digital	computers	is	essentially	a	memory	unit	with	an	address	register	that	can	count	only	(after	an
initial	value	is	loaded	into	it).	A	Stack	Pointer	(SP)	is	the	register	where	the	address	for	the	stack	is	held	because	its	value	always	points	at	the	top	item	in	the	stack.	The	physical	registers	of	a	stack	are	always	available	for	reading	or	writing	unlike	a	stack	of	trays	where	the	tray	itself	may	be	taken	out	or	inserted	because	it	is	the	content	of	the	word
that	is	inserted	or	deleted.	A	stack	has	only	two	operations	i.e.	the	insertion	and	deletion	of	items.	The	operation	insertion	is	called	push	(or	push-down)	because	it	can	be	thought	of	as	the	result	of	pushing	a	new	item	on	top.	The	deletion	operation	is	called	pop	(or	pop-up)	because	it	can	be	thought	of	as	the	result	of	removing	one	item	so	that	the
stack	pops	up.	In	actual,	nothing	is	exactly	pushed	or	popped	in	a	computer	stack.	These	operations	are	simulated	by	incrementing	or	decrementing	the	stack	pointer	register.	74.	Paper	Name:	Computer	Organization	and	Architecture	5.1.1	Register	Stack	There	are	two	ways	to	place	a	stack.	Either	it	can	be	placed	in	a	portion	of	a	large	memory	or	it
can	be	organized	as	a	collection	of	a	finite	number	of	memory	words	or	registers.	The	organization	of	a	64-word	register	stack	is	exhibited	in	figure	5.3.	A	binary	number	whose	value	is	equal	to	the	address	of	the	word	that	is	currently	on	top	of	the	stack	is	contained	by	the	stack	pointer	register.	Three	items	are	placed	in	the	stack	-	A,	B	and	C	in	that
order.	Item	C	is	on	top	of	the	stack	so	that	the	content	of	SP	is	now	3.	To	remove	the	top	item,	the	stack	is	popped	by	reading	the	memory	word	at	address	3	and	decrementing	the	content	of	SP.	Item	B	is	now	on	top	of	the	stack	since	SP	holds	address	2.	To	insert	a	new	item,	the	stack	is	pushed	by	incrementing	SP	and	writing	a	word	in	the	next-
higher	location	in	the	stack.	Note	that	item	C	has	been	read	out	but	not	physically	removed.	This	does	not	matter	because	when	the	stack	is	pushed,	a	new	item	is	written	in	its	place.	In	a	64-word	stack,	the	stack	pointer	contains	6	bits	because	26	=	64.	Since	SP	has	only	six	bits,	it	cannot	exceed	a	number	greater	than	63	(111111	in	binary).	When	63
is	incremented	by	l,	the	result	is	0	since	111111	+	1	=	1000000	in	binary,	but	SP	can	accommodate	only	the	six	least	significant	bits.	Similarly,	when	000000	is	decremented	by	1,	the	result	is	111111.	The	1-bit	register	FULL	is	set	to	1	when	the	stack	is	full,	and	the	one-bit	register	EMTY	is	set	to	1	when	the	stack	is	empty	of	items.	DR	is	the	data
register	that	holds	the	binary	data	to	be	written	into	or	read	out	of	the	stack.	Initially,	SP	is	cleared	to	0,	EMTY	is	set	to	1,	and	FULL	is	cleared	to	0,	so	that	SP	points	to	the	word	at	address	0	and	the	stack	is	marked	empty	and	not	full.	If	the	stack	is	not	full	(if	FULL	=	0),	a	new	item	is	inserted	with	a	push	operation.	The	push	operation	is	implemented
with	the	following	sequence	of	micro-operations:	SP	←	SP	+	1	Increment	stack	pointer	M[SP]	←	DR	Write	item	on	top	of	the	stack	If	(SP=	0)	then	(FULL	←	l)	Check	if	stack	is	full	The	stack	pointer	is	incremented	so	that	it	points	to	the	address	of	the	next-higher	word.	The	word	from	DR	is	inserted	into	the	top	of	the	stack	by	the	memory	write
operation.	The	M[SP]	denotes	the	memory	word	specified	by	the	address	presently	available	in	SP	whereas	the	SP	holds	the	address	the	top	of	the	stack.	The	storage	of	the	first	item	is	done	at	address	1	whereas	as	the	last	item	is	store	at	address	0.	If	SP	reaches	0,	the	stack	is	full	of	items,	so	FULL	is	set	to	1.	This	condition	is	reached	if	the	top	item
prior	to	the	last	push	was	in	location	63	and	after	incrementing	SP,	the	last	item	is	stored	in	location	0.	Once	an	item	is	stored	in	location	0,	there	are	no	more	empty	registers	in	the	stack.	If	an	item	is	written	in	the	stack,	obviously	the	stack	cannot	be	empty,	so	EMTY	is	cleared	to	0.	A	new	item	is	deleted	from	the	stack	if	the	stack	is	not	empty	(if
EMTY	0).	The	pop	operation	consists	of	the	following	sequence	of	micro-operations:	75.	Paper	Name:	Computer	Organization	and	Architecture	DR	←	M[SP]	Read	item	from	the	top	of	stack	SP	←	SP	–	1	Decrement	stack	pointer	If	(SP	==	0)	then	(FULL	←	1)	Check	if	stack	is	empty	EMTY	←	0	Mark	the	stack	not	full	DR.	reads	the	top	item	from	the	stack.



Then	the	stack	pointer	is	decremented.	If	its	value	attains	zero,	the	stack	is	empty,	so	EMTY	is	set	to	1.	This	condition	is	reached	if	the	item	read	was	in	location	1.	Once	this	item	is	read	out,	SP	is	decremented	and	it	attain	reaches	the	value	0,	which	is	the	initial	value	of	SP.	Note	that	if	a	pop	operation	reads	the	item	from	location	0	and	then	SP	is
decremented,	SP	changes	to	111111,	which	is	equivalent	to	decimal	63.	In	this	configuration,	the	word	in	address	0	receives	the	last	item	in	the	stack.	Note	also	that	an	erroneous	operation	will	result	if	the	stack	is	pushed	when	FULL	=	1	or	popped	when	EMPTY	=	1.	5.1.2	Memory	Stack	As	shown	in	Fig.	5.3,	stack	can	exist	as	a	stand-alone	unit	or
can	be	executed	in	a	random-access	memory	attached	to	a	CPU.	The	implementation	of	a	stack	in	the	CPU	is	done	by	assigning	a	portion	of	memory.	A	portion	of	memory	is	assigned	to	a	stack	operation	and	a	processor	register	is	used	as	a	stack	pointer	to	execute	stack	in	the	CPU.	Figure	5.4	shows	a	portion	of	computer	memory	partitioned	into
three	segments	-	program,	data,	and	stack.	The	address	of	the	next	instruction	in	the	program	is	located	by	the	program	counter	PC	while	an	array	of	data	is	pointed	by	address	register	AR.	The	top	of	the	stack	is	located	by	the	stack	pointer	SP.	The	three	registers	are	connected	to	a	common	address	bus,	which	connects	the	three	registers	and	either
one	can	provide	an	address	for	memory.	PC	is	used	during	the	fetch	phase	to	read	an	instruction.	AR	is	used	during	the	execute	phase	to	read	an	operand.	SP	is	used	to	push	or	pop	items	into	or	from	the	stack.	76.	Paper	Name:	Computer	Organization	and	Architecture	Figure	5.4:	Computer	memory	with	program,	data,	and	slack	segments.	Fig	5.4
displays	the	initial	value	of	SP	at	4001	and	the	growing	of	stack	with	decreasing	addresses.	Thus	the	first	item	stored	in	the	stack	is	at	address	4000,	the	second	item	is	stored	at	address	3999,	and	the	last	address	that	can	be	used	for	the	stack	is	3000.	No	checks	are	provided	for	checking	stack	limits.	We	assume	that	the	items	in	the	stack
communicate	with	a	data	register	DR.	A	new	item	is	inserted	with	the	push	operation	as	follows:	SP	←	SP	–	1	M[SP]	←	DR	The	stack	pointer	is	decremented	so	that	it	points	at	the	address	of	the	next	word.	A	memory	write	operation	inserts	the	word	form	DR	into	the	top	of	the	stack.	A	new	item	is	deleted	with	a	pop	operation	as	follows:	DR	←	M[SP]
SP	←	SP	+	1	The	top	item	is	read	from	the	stack	into	DR.	The	stack	pointer	is	then	incremented	to	point	at	the	next	item	in	the	stack.	77.	Paper	Name:	Computer	Organization	and	Architecture	Most	computers	are	not	equipped	with	hardware	to	check	for	stack	overflow	(full	stack)	or	underflow	(empty	stack).	The	stack	limits	can	be	checked	by	using
two	processor	registers:	one	to	hold	the	upper	limit	(3000	in	this	case),	and	the	other	to	hold	the	lower	limit	(40001	in	this	case).	After	a	push	operation,	SP	is	compared	with	the	upper-limit	register	and	after	a	pop	operation,	SP	is	compared	with	the	lower-limit	register.	5.1.3	Reverse	Polish	Notation	Reverse	Polish	Notation	is	a	way	of	expressing
arithmetic	expressions	that	avoids	the	use	of	brackets	to	define	priorities	for	evaluation	of	operators.	In	ordinary	notation,	one	might	write	(3	+	5)	*	(7	-	2)	and	the	brackets	tell	us	that	we	have	to	add	3	to	5,	then	subtract	2	from	7,	and	multiply	the	two	results	together.	In	RPN,	the	numbers	and	operators	are	listed	one	after	another,	and	an	operator
always	acts	on	the	most	recent	numbers	in	the	list.	The	numbers	can	be	thought	of	as	forming	a	stack,	like	a	pile	of	plates.	The	most	recent	number	goes	on	the	top	of	the	stack.	An	operator	takes	the	appropriate	number	of	arguments	from	the	top	of	the	stack	and	replaces	them	by	the	result	of	the	operation.	In	this	notation	the	above	expression	would
be	3	5	+	7	2	-	*	Reading	from	left	to	right,	this	is	interpreted	as	follows:	•	Push	3	onto	the	stack.	•	Push	5	onto	the	stack.	The	stack	now	contains	(3,	5).	•	Apply	the	+	operation:	take	the	top	two	numbers	off	the	stack,	add	them	together,	and	put	the	result	back	on	the	stack.	The	stack	now	contains	just	the	number	8.	•	Push	7	onto	the	stack.	•	Push	2
onto	the	stack.	It	now	contains	(8,	7,	2).	•	Apply	the	-	operation:	take	the	top	two	numbers	off	the	stack,	subtract	the	top	one	from	the	one	below,	and	put	the	result	back	on	the	stack.	The	stack	now	contains	(8,	5).	•	Apply	the	*	operation:	take	the	top	two	numbers	off	the	stack,	multiply	them	together,	and	put	the	result	back	on	the	stack.	The	stack
now	contains	just	the	number	40.	Polish	Notation	was	devised	by	the	Polish	philosopher	and	mathematician	Jan	Lucasiewicz	(1878-1956)	for	use	in	symbolic	logic.	In	his	notation,	the	operators	preceded	their	arguments,	so	that	the	expression	above	would	be	written	as	*	+	3	5	-	7	2	The	'reversed'	form	has	however	been	found	more	convenient	from	a
computational	point	of	view.	78.	Paper	Name:	Computer	Organization	and	Architecture	5.2	Instruction	Formats	•	It	is	the	function	of	the	control	unit	within	the	CPU	to	interpret	each	instruction	code	•	The	bits	of	the	instruction	are	divided	into	groups	called	fields	•	The	most	common	fields	are:	o	Operation	code	o	Address	field	–	memory	address	or	a
processor	register	o	Mode	field	–	specifies	the	way	the	operand	or	effective	address	is	determined	•	A	register	address	is	a	binary	number	of	k	bits	that	defines	one	of	2k	registers	in	the	CPU	•	The	instructions	may	have	several	different	lengths	containing	varying	number	of	addresses	•	The	number	of	address	fields	in	the	instruction	format	of	a
computer	depends	on	the	internal	organization	of	its	registers	•	Most	computers	fall	into	one	of	the	three	following	organizations:	o	Single	accumulator	organization	o	General	register	organization	o	Stack	organization	•	Single	accumulator	org.	uses	one	address	field	ADD	X	:	AC	←	AC	+	M[X]	•	The	general	register	org.	uses	three	address	fields	ADD
R1,	R2,	R3:	R1	←	R2	+	R3	•	Can	use	two	rather	than	three	fields	if	the	destination	is	assumed	to	be	one	of	the	source	registers	•	Stack	org.	would	require	one	address	field	for	PUSH/POP	operations	and	none	for	operation-type	instructions	PUSH	X	ADD	•	Some	computers	combine	features	from	more	than	one	organizational	structure	Example:	X	=
(A+B)	*	(C	+	D)	5.2.1	Three-address	instructions:	ADD	R1,	A,	B	R1	←	M[A]	+	M[B]	ADD	R2,	C,	D	R2	←	M[C]	+	M[D]	MUL	X,	R1,	R2	M[X]	←	R1	*	R2	79.	Paper	Name:	Computer	Organization	and	Architecture	5.2.2	Two-address	instructions:	MOV	R1,	A	R1	←	M[A]	ADD	R1,	B	R1	←	R1	+	M[B]	MOV	R2,	C	R2	←	M[C]	ADD	R2,	D	R2	←	R2	+	D	MUL	R1,	R2
R1	←	R1	*	R2	MOV	X,	R1	M[X]	←	R1	5.2.3	One-address	instructions:	LOAD	A	AC	←	M[A]	ADD	B	AC	←	AC	+	M[B]	STORE	T	M[T]	←	AC	LOAD	C	AC	←	M[C]	ADD	D	AC	←	AC	+	M[D]	MUL	T	AC	←	AC	*	M[T]	STORE	X	M[X]	←	AC	5.2.4	Zero-address	instructions:	PUSH	A	TOS	←	A	PUSH	B	TOS	←B	ADD	TOS	←	(A	+B)	PUSH	C	TOS	←	C	PUSH	D	TOS	←	D	ADD
TOS	←	(C	+	D)	MUL	TOS	←	(C	+	D)	*	(A	+	B)	POP	X	M[X]	←	TOS	5.2.5	RISC	instructions:	LOAD	R1,	A	R1	←	M[A]	LOAD	R2,	B	R2	←	M[B]	LOAD	R3,	C	R3	←	M[C]	LOAD	R4,	D	R4	←	M[D]	ADD	R1,	R1,	R2	R1	←	R1	+	R2	ADD	R3,	R3,	R4	R3	←	R3	+	R4	80.	Paper	Name:	Computer	Organization	and	Architecture	MUL	R1,	R1,	R3	R1	←	R1	*	R3	STORE	X,	R1
M[X]	←	R1	5.3Addressing	Modes	Many	of	the	instructions	which	a	computer	actually	executes	during	the	running	of	a	program	concern	the	movement	of	data	to	and	from	memory.	It	is	not	possible	simply	to	specify	fixed	addresses	within	each	instruction,	as	this	would	require	the	location	of	data	to	be	known	at	the	time	when	the	program	was
written.	This	is	not	possible	for	several	reasons.	o	When	a	program	is	read	from	disk,	it	will	be	put	in	memory	in	a	position	which	cannot	be	predicted	in	advance.	Hence,	the	location	of	any	data	in	the	program	cannot	be	known	in	advance.	o	Similarly,	data	which	has	been	previously	archived	to	files	on	disk	or	tape	will	be	loaded	into	memory	at	a
position	which	cannot	be	known	in	advance.	o	If	the	data	we	wish	to	use	will	be	read	from	an	input	device,	then	we	cannot	know	in	advance	where	in	memory	it	will	be	stored.	o	Many	calculations	involve	performing	the	same	operation	repeatedly	on	a	large	quantity	of	data	(for	example,	modifying	an	image	which	consists	of	over	a	million	pixels).	If
each	instruction	operated	on	a	fixed	memory	location,	then	the	program	would	have	to	contain	the	same	instruction	many	times,	once	for	each	pixel.	We	therefore	need	different	strategies	for	specifying	the	location	of	data.	Immediate	addressing	The	data	itself,	rather	than	an	address,	is	given	as	the	operand(s)	of	the	instruction.	Direct	or	Absolute
addressing	A	fixed	address	is	specified.	Implied	addressing	The	location	of	the	data	is	implied	by	the	instruction	itself,	so	no	operands	need	to	be	given.	For	example,	a	computer	might	have	the	instruction	INCA,	increment	the	accumulator.	Relative	addressing	The	location	of	the	data	is	specified	relative	to	the	current	value	of	the	program	counter.
This	is	useful	for	specifying	the	location	of	data	which	is	given	as	part	of	the	program.	81.	Paper	Name:	Computer	Organization	and	Architecture	Indirect	addressing	A	memory	location	is	given	which	holds	another	memory	location.	This	second	memory	location	holds	the	actual	data.	This	mechanism	solves	the	problems	caused	by	reading	data	from
file	or	an	input	device	during	program	execution.	Indexed	addressing	The	location	of	the	data	is	calculated	as	the	sum	of	an	address	specified	by	one	of	the	previous	methods,	and	the	value	of	an	index	register.	This	allows	an	array	of	data	(for	example,	an	image)	to	be	accessed	repeatedly	by	the	same	sequence	of	instructions.	•	The	addressing	mode
specifies	a	rule	for	interpreting	or	modifying	the	address	field	of	the	instruction	before	the	operand	is	actually	referenced	•	The	decoding	step	in	the	instruction	cycle	determines	the	operation	to	be	performed,	the	addressing	mode	of	the	instruction,	and	the	location	of	the	operands	•	Two	addressing	modes	require	no	address	fields	–	the	implied	mode
and	immediate	mode	•	Implied	mode:	the	operands	are	specified	implicitly	in	the	definition	of	the	instruction	–	complement	accumulator	or	zero-address	instructions	•	Immediate	mode:	the	operand	is	specified	in	the	instruction	•	Register	mode:	the	operands	are	in	registers	•	Register	indirect	mode:	the	instruction	specifies	a	register	that	contains
the	address	of	the	operand	•	Auto	increment	or	auto	decrement	mode:	similar	to	the	register	indirect	mode	•	Direct	address	mode:	the	operand	is	located	at	the	specified	address	given	•	Indirect	address	mode:	the	address	specifies	the	effective	address	of	the	operand	•	Relative	address	mode:	the	effective	address	is	the	summation	of	the	address
field	and	the	content	of	the	PC	•	Indexed	addressing	mode:	the	effective	address	is	the	summation	of	an	index	register	and	the	address	field	•	Base	register	address	mode:	the	effective	address	is	the	summation	of	a	base	register	and	the	address	field	82.	Paper	Name:	Computer	Organization	and	Architecture	Data	Transfer	and	Manipulation	•	There	is
a	basic	set	of	operations	that	most	computers	include	in	their	instruction	set	•	The	opcode	and/or	symbolic	code	may	differ	for	the	same	instruction	among	different	computers	•	There	are	three	main	categories	of	computer	instructions:	83.	Paper	Name:	Computer	Organization	and	Architecture	o	Data	transfer	o	Data	manipulation	o	Program	control	•
Data	transfer	instructions:	transfer	data	from	one	location	to	another	without	changing	the	binary	information	content	Load	LD	Input	IN	Store	ST	OutputOUT	Move	MOV	Push	PUSH	Exchange	XCH	Pop	POP	•	Some	assembly	language	conventions	modify	the	mnemonic	symbol	to	differentiate	between	addressing	modes	LDI	–	load	immediate	•	Some
use	a	special	character	to	designate	the	mode	•	Data	manipulation	instructions:	perform	arithmetic,	logic,	and/or	shift	operation	•	Arithmetic	instructions:	Increment	INC	Divide	DIV	Decrement	DEC	Add	w/carry	ADDC	Add	ADD	Sub.	w/borrow	SUBB	Subtract	SUB	Negate	(2’s	comp)	NEG	Multiply	MUL	•	Some	computers	have	different	instructions
depending	upon	the	data	type	ADDI	Add	two	binary	integer	numbers	84.	Paper	Name:	Computer	Organization	and	Architecture	ADDF	Add	two	floating	point	numbers	ADDD	Add	two	decimal	numbers	in	BCD	•	Logical	and	bit	manipulation	instructions:	Clear	CLR	Clear	carry	CLRC	Complement	COM	Set	carry	SETC	AND	AND	Comp.	carry	COMC	OR
OR	Enable	inter.	EI	Exclusive-OR	XOR	Disable	inter.	DI	•	Clear	selected	bits	–	AND	instruction	•	Set	selected	bits	–	OR	instruction	•	Complement	selected	bits	–	XOR	instruction	•	Shift	instructions:	Logical	shift	right	SHR	Rotate	right	ROR	Logical	shift	left	SHL	Rotate	left	ROL	Arithmetic	shift	right	SHRA	ROR	thru	carry	RORC	Arithmetic	shift	left
SHLA	ROL	thru	carry	ROLC	OP	REG	TYPE	RL	COUNT	Program	Control	•	Program	control	instructions:	provide	decision-making	capabilities	and	change	the	program	path	•	Typically,	the	program	counter	is	incremented	during	the	fetch	phase	to	the	location	of	the	next	instruction	•	A	program	control	type	of	instruction	may	change	the	address	value
in	the	program	counter	and	cause	the	flow	of	control	to	be	altered	•	This	provides	control	over	the	flow	of	program	execution	and	a	capability	for	branching	to	different	program	segments	Branch	BR	Return	RET	Jump	JMP	Compare	CMP	Skip	SKP	Test	TST	Call	CALL	•	TST	and	CMP	cause	branches	based	upon	four	status	bits:	C,	S,	Z,	and	V	85.	Paper
Name:	Computer	Organization	and	Architecture	86.	Paper	Name:	Computer	Organization	and	Architecture	•	A	call	subroutine	instruction	consists	of	an	operation	code	together	with	an	address	that	specifies	the	beginning	of	the	subroutine	•	Execution	of	CALL:	o	Temporarily	store	return	address	o	Transfer	control	to	the	beginning	of	the	subroutine	–
update	PC	SP	←	SP	–	1	M[SP]	←	PC	PC	←	effective	address	•	Execution	of	RET:	o	Transfer	return	address	from	the	temporary	location	to	the	PC	PC	←	M[SP]	SP	←	SP	+	1	•	Program	interrupt	refers	to	the	transfer	of	program	control	to	a	service	routine	as	a	result	of	interrupt	request	87.	Paper	Name:	Computer	Organization	and	Architecture	•	Control
returns	to	the	original	program	after	the	service	program	is	executed	•	An	interrupt	procedure	is	similar	to	a	subroutine	call	except:	o	The	interrupt	is	usually	initiated	by	an	internal	or	external	signal	rather	than	an	instruction	o	The	address	of	the	interrupt	service	routine	is	determined	by	the	hardware	rather	than	the	address	field	of	an	instruction	o
All	information	necessary	to	define	the	state	of	the	CPU	is	stored	rather	than	just	the	return	address	•	The	interrupted	program	should	resume	exactly	as	if	nothing	had	happened	•	The	state	of	the	CPU	at	the	end	of	the	execute	cycle	is	determined	from:	o	The	content	of	the	PC	o	The	content	of	all	processor	registers	o	The	content	of	certain	status
conditions	•	The	program	status	word	(PSW)	is	a	register	that	holds	the	status	and	control	flag	conditions	•	Not	all	computers	store	the	register	contents	when	responding	to	an	interrupt	•	The	CPU	does	not	respond	to	an	interrupt	until	the	end	of	an	instruction	execution	•	The	control	checks	for	any	interrupt	signals	before	entering	the	next	fetch
phase	•	Three	types	of	interrupts:	o	External	interrupts	o	Internal	interrupts	o	Software	interrupts	•	External	interrupts	come	from	I/O	devices,	timing	devices,	or	any	other	external	source	•	Internal	interrupts	arise	from	illegal	or	erroneous	use	of	an	instruction	or	data,	also	called	traps	•	Internal	interrupts	are	synchronous	while	external	ones	are
asynchronous	•	Both	are	initiated	from	signals	that	occur	in	the	hardware	of	the	CPU	•	A	software	interrupt	is	initiated	by	executing	an	instruction	5.4	Reduced	Instruction	Set	Computer	5.4.1	CISC	characteristics	CISC,	which	stands	for	Complex	Instruction	Set	Computer,	is	a	philosophy	for	designing	chips	that	are	easy	to	program	and	which	make
efficient	use	of	memory.	Each	instruction	in	a	CISC	instruction	set	might	perform	a	series	of	operations	inside	the	88.	Paper	Name:	Computer	Organization	and	Architecture	processor.	This	reduces	the	number	of	instructions	required	to	implement	a	given	program,	and	allows	the	programmer	to	learn	a	small	but	flexible	set	of	instructions.	Since	the
earliest	machines	were	programmed	in	assembly	language	and	memory	was	slow	and	expensive,	the	CISC	philosophy	made	sense,	and	was	commonly	implemented	in	such	large	computers	as	the	PDP-11	and	the	DECsystem	10	and	20	machines.	Most	common	microprocessor	designs	---	including	the	Intel(R)	80x86	and	Motorola	68K	series	---	also
follow	the	CISC	philosophy.	As	we	shall	see,	recent	changes	in	software	and	hardware	technology	have	forced	a	re-	examination	of	CISC.	But	first,	let's	take	a	closer	look	at	the	decisions	which	led	to	CISC.	5.4.2	CISCphilosophy1UseMicrocode	The	earliest	processor	designs	used	dedicated	(hardwire)	logic	to	decode	and	execute	each	instruction	in	the
processor's	instruction	set.	This	worked	well	for	simple	designs	with	few	registers,	but	made	more	complex	architectures	hard	to	build,	as	control	path	logic	can	be	hard	to	implement.	So,	designers	switched	tactics	---	they	built	some	simple	logic	to	control	the	data	paths	between	the	various	elements	of	the	processor,	and	used	a	simplified	microcode
instruction	set	to	control	the	data	path	logic.	This	type	of	implementation	is	known	as	a	microprogrammed	implementation.	In	a	microprogrammed	system,	the	main	processor	has	some	built-in	memory	(typically	ROM)	which	contains	groups	of	microcode	instructions	which	correspond	with	each	machine-language	instruction.	When	a	machine
language	instruction	arrives	at	the	central	processor,	the	processor	executes	the	corresponding	series	of	microcode	instructions.	Because	instructions	could	be	retrieved	up	to	10	times	faster	from	a	local	ROM	than	from	main	memory,	designers	began	to	put	as	many	instructions	as	possible	into	microcode.	In	fact,	some	processors	could	be	ordered
with	custom	microcode	which	would	replace	frequently	used	but	slow	routines	in	certain	application.	There	are	some	real	advantages	to	a	microcoded	implementation:	since	the	microcode	memory	can	be	much	faster	than	main	memory,	an	instruction	set	can	be	implemented	in	microcode	without	losing	much	speed	over	a	purely	hard-	wired
implementation.	new	chips	are	easier	to	implement	and	require	fewer	transistors	than	implementing	the	same	instruction	set	with	dedicated	logic,	and...	a	microprogrammed	design	can	be	modified	to	handle	entirely	new	instruction	sets	89.	Paper	Name:	Computer	Organization	and	Architecture	quickly.	Using	microcoded	instruction	sets,	the	IBM
360	series	was	able	to	offer	the	same	programming	model	across	a	range	of	different	hardware	configurations.	Some	machines	were	optimized	for	scientific	computing,	while	others	were	optimized	for	business	computing.	However,	since	they	all	shared	the	same	instruction	set,	programs	could	be	moved	from	machine	to	machine	without	re-
compilation	(but	with	a	possible	increase	or	decrease	in	performance	depending	on	the	underlying	hardware.)	This	kind	of	flexibility	and	power	made	microcoding	the	preferred	way	to	build	new	computers	for	quite	some	time.	CISCphilosophy2:Build"rich"instructionsets	One	of	the	consequences	of	using	a	microprogrammed	design	is	that	designers
could	build	more	functionality	into	each	instruction.	This	not	only	cut	down	on	the	total	number	of	instructions	required	to	implement	a	program,	and	therefore	made	more	efficient	use	of	a	slow	main	memory,	but	it	also	made	the	assembly-language	programmer's	life	simpler.	Soon,	designers	were	enhancing	their	instruction	sets	with	instructions
aimed	specifically	at	the	assembly	language	programmer.	Such	enhancements	included	string	manipulation	operations,	special	looping	constructs,	and	special	addressing	modes	for	indexing	through	tables	in	memory.	Forexample:	ABCDAddDecimalwithExtend	ADDAAddAddress	ADDXAddwithExtend	ASLArithmenticShiftLeft
CASCompareandSwapOperands	NBCDNegateDecimalwithExtend	EORILogicalExclusiveORImmediate	TAS	Test	Operand	and	Set	CISCphilosophy3:Buildhigh-levelinstructionsets	Once	designers	started	building	programmer-friendly	instruction	sets,	the	logical	next	step	was	to	build	instruction	sets	which	map	directly	from	high-level	languages.	Not
only	does	this	simplify	the	compiler	writer's	task,	but	it	also	allows	compilers	to	emit	fewer	instructions	per	line	of	source	code.	90.	Paper	Name:	Computer	Organization	and	Architecture	Modern	CISC	microprocessors,	such	as	the	68000,	implement	several	such	instructions,	including	routines	for	creating	and	removing	stack	frames	with	a	single	call.
Forexample:	DBccTestCondition,DecrementandBranch	ROXLRotatewithExtendLeft	RTRReturnandRestoreCodes	SBCDSubtractDecimalwithExtend	SWAPSwapregisterWords	CMP2	Compare	Register	against	Upper	and	Lower	Bounds	TheriseofCISC	CISCDesignDecisions:	usemicrocode	buildrichinstructionsets	buildhigh-levelinstructionsets	Taken
together,	these	three	decisions	led	to	the	CISC	philosophy	which	drove	all	computer	designs	until	the	late	1980s,	and	is	still	in	major	use	today.	(Note	that	"CISC"	didn't	enter	the	computer	designer's	vocabulary	until	the	advent	of	RISC	---	it	was	simply	the	way	that	everybody	designed	computers.)	The	next	lesson	discusses	the	common	characteristics
that	all	CISC	designs	share,	and	how	those	characteristics	affect	the	operation	of	a	CISC	machine.	The	disadvantages	of	CISC	Still,	designers	soon	realized	that	the	CISC	philosophy	had	its	own	problems,	including:	Earlier	generations	of	a	processor	family	generally	were	contained	as	a	subset	in	every	new	version	---	so	instruction	set	&	chip	hardware
become	more	complex	with	each	generation	of	computers.	So	that	as	many	instructions	as	possible	could	be	stored	in	memory	with	the	least	possible	wasted	space,	individual	instructions	could	be	of	almost	any	length---this	means	that	different	instructions	will	take	different	amounts	of	clock	time	to	execute,	slowing	down	the	overall	performance	of
the	machine.	Many	specialized	instructions	aren't	used	frequently	enough	to	justify	their	existence	---	approximately	20%	of	the	available	instructions	are	used	in	a	typical	program.	CISC	instructions	typically	set	the	condition	codes	as	a	side	effect	of	the	instruction.	Not	only	does	setting	the	condition	codes	take	time,	but	programmers	have	to	91.
Paper	Name:	Computer	Organization	and	Architecture	remember	to	examine	the	condition	code	bits	before	a	subsequent	instruction	changes	them.	RISC	characteristics	The	design	of	the	instruction	set	for	the	processor	is	very	important	in	terms	of	computer	architecture.	It’s	the	instruction	set	of	a	particular	computer	that	determines	the	way	that
machine	language	programs	are	constructed.	Computer	hardware	is	improvised	by	various	factors,	such	as	upgrading	existing	models	to	provide	more	customer	applications	adding	instructions	that	facilitate	the	translation	from	high-level	language	into	machine	language	programs	and	striving	to	develop	machines	that	move	functions	from	software
implementation	into	hardware	implementation.	A	computer	with	a	large	number	of	instructions	is	classified	as	a	complex	instruction	set	computer,	abbreviated	as	CISC.	An	important	aspect	of	computer	architecture	is	the	design	of	the	instruction	set	for	the	processor	The	instruction	set	determines	the	way	that	machine	language	programs	are
constructed	•	Many	computers	have	instructions	sets	of	about	100	-	250	instructions	•	These	computers	employ	a	variety	of	data	types	and	a	large	number	of	addressing	modes	–	complex	instruction	set	computer	(CISC)	•	A	RISC	uses	fewer	instructions	with	simple	constructs	so	they	can	be	executed	much	faster	within	the	CPU	without	having	to	use
memory	as	often	•	The	essential	goal	of	a	CISC	architecture	is	to	attempt	to	provide	a	single	machine	instruction	for	each	statement	that	is	written	in	a	high-level	language	•	The	major	characteristics	of	CISC	architecture	are:	Large	number	of	instructions	Some	instructions	that	perform	specialized	tasks	and	are	used	infrequently	Large	variety	of
addressing	modes	Variable	length	instruction	formats	Instructions	that	manipulate	operands	in	memory	•	The	goal	of	RISC	architecture	is	to	reduce	execution	time	by	simplifying	the	instructions	set	RISC	Characteristics	The	essential	goal	of	RISC	architecture	involves	an	attempt	to	reduce	execution	time	by	simplifying	the	instruction	set	of	the
computer.	The	major	characteristics	of	a	RISC	processor	are:	Relatively	few	instructions.	Relatively	few	addressing	modes.	Memory	access	limited	to	load	and	store	instructions.	92.	Paper	Name:	Computer	Organization	and	Architecture	All	operations	done	within	the	registers	of	the	CPU.	Fixed	length	easily	decoded	instruction	format.	Single-cycle
instruction	execution.	Hardwired	rather	than	microprogrammed	control.	A	typical	RISC	processor	architecture	includes	register-to-register	operations,	with	only	simple	load	and	store	operations	for	memory	access.	Thus	the	operand	is	code	into	a	processor	register	with	a	load	instruction.	All	computational	tasks	are	performed	among	the	data	stored
in	processor	registers	and	with	the	help	of	store	instructions	results	are	transferred	to	the	memory.	This	architectural	feature	simplifies	the	instruction	set	and	encourages	the	optimization	of	register	manipulation.	Almost	all	instructions	have	simple	register	addressing	so	only	a	few	addressing	modes	are	utilised.	Other	addressing	modes	may	be
included,	such	as	immediate	operands	and	relative	mode.	An	advantage	of	RISC	instruction	format	is	that	it	is	easy	to	decode.	An	important	feature	of	RISC	processor	is	its	ability	to	execute	one	instruction	per	clock	cycle.	This	is	done	by	a	procedure	referred	to	as	pipelining.	A	load	or	store	instruction	may	need	two	clock	cycles	because	access	to
memory	consumes	more	time	than	register	operations.	Other	characteristics	attributed	to	RISC	architecture	are:	A	relatively	large	number	of	register	in	the	processor	unit.	Use	of	overlapped	register	windows	to	speed-up	procedure	call	and	return.	Efficient	instruction	pipeline.	Compiler	support	for	efficient	translation	of	high-level	language	programs
into	machine	language	programs.	•	Overlapped	register	windows	are	used	to	pass	parameters	and	avoids	the	need	for	saving	and	restoring	register	values	during	procedure	calls	•	Each	procedure	call	activates	a	new	register	window	by	incrementing	a	pointer,	while	the	return	statement	decrements	the	pointer	and	causes	the	activation	of	the
previous	window	•	Windows	for	adjacent	procedures	have	overlapping	registers	that	are	shared	to	provide	the	passing	of	parameters	and	results	•	Example:	system	with	74	registers	and	four	procedures	Each	procedure	has	a	total	of	32	registers	while	active	10	global	registers	10	local	registers	6	low	overlapping	registers	6	high	overlapping	registers
•	Relationships	of	register	windows	#	of	global	registers	=	G	#	of	local	registers	in	each	window	=	L	#	of	common	registers	to	two	windows	=	C	#	of	windows	=	W	window	size	=	L	+	2C	+	G	93.	Paper	Name:	Computer	Organization	and	Architecture	total	#	of	registers	=	(L	+	C)W	+	G	The	first	CPUs	had	a	so	called	Complex	Instruction	Set	Computer
(CISC).	This	means	that	the	computer	can	understand	many	and	complex	instructions.	The	X86	instruction	set,	with	its	varying	length	from	8	to	120	bit,	was	originally	developed	for	the	8086	with	its	mere	29000	transistors.	More	instructions	have	been	added	within	new	generations	of	CPUs.	The	80386	had	26	new	instructions,	the	486	added	6	and
the	Pentium	another	8	new	instructions.	This	meant,	that	programs	had	to	be	rewritten	to	use	these	new	instructions.	This	happened	for	example	with	new	versions	of	Windows	.	Hence,	some	programs	require	a	386	or	a	Pentium	processor	to	function.	94.	Paper	Name:	Computer	Organization	and	Architecture	UNIT	6	INPUT-OUTPUT
ORGANIZATION	6.2	Modes	of	transfer	6.2.1	Programmed	I/O	6.2.2	Interrupt-Initiated	I/O	6.3	Priority	interrupt	6.3.1	Daisy-chaining	priority	6.3.2	Parallel	priority	interrupt	6.3.3	Interrupt	cycle	6.4	DMA	6.4.1	DMA	Controller	6.4.2	DMA	Transfer	6.5	Input-Output	Processor	(IOP)	6.5.1	CPU-IOP	Communication	6.5.2	Serial	Communication	6.5.3
Character-Oriented	Protocol	6.5.4	Bit-Oriented	Protocol	6.5	Modes	of	transfer	6.1.1	Programmed	I/O	The	simplest	strategy	for	handling	communication	between	the	CPU	and	an	I/O	module	is	programmed	I/O.	Using	this	strategy,	the	CPU	is	responsible	for	all	communication	with	I/O	modules,	by	executing	instructions	which	control	the	attached
devices,	or	transfer	data.	For	example,	if	the	CPU	wanted	to	send	data	to	a	device	using	programmed	I/O,	it	would	first	issue	an	instruction	to	the	appropriate	I/O	module	to	tell	it	to	expect	data.	The	CPU	must	then	wait	until	the	module	responds	before	sending	the	data.	If	the	module	is	slower	than	the	CPU,	then	the	CPU	may	also	have	to	wait	until
the	transfer	is	complete.	This	can	be	very	inefficient.	Another	problem	exists	if	the	CPU	must	read	data	from	a	device	such	as	a	keyboard.	Every	so	often	the	CPU	must	issue	an	instruction	to	the	appropriate	I/O	module	to	see	if	any	keys	have	been	pressed.	This	is	also	extremely	inefficient.	Consequently	this	strategy	is	only	used	in	very	small
microprocessor	controlled	devices.	6.1.2	Interrupt	Driven	I/O	95.	Paper	Name:	Computer	Organization	and	Architecture	Virtually	all	computers	provide	a	mechanism	y	which	other	modules	(I/O,	memory	)	may	interrupt	the	normal	processing	of	the	CPU.	Table	3.1	lists	the	most	common	classes	of	interrupts.	The	specific	nature	of	these	interrupts	is
examined	later	in	this	book,	specially	in	chapters	6	and	11.	However,	we	need	to	introduce	the	concept	now	in	order	to	understand	more	clearly	the	nature	of	the	instruction	cycle	and	the	implications	of	interrupts	on	the	interconnection	structure.	The	reader	need	not	be	concerned	at	this	stage	about	the	details	of	the	generation	and	processing	of
interrupts,	but	only	focus	on	the	communication	between	modules	that	results	from	interrupts.	Interrupts	are	provided	primarily	as	a	way	to	improve	processing	efficiency.	For	example,	most	external	devices	are	much	slower	than	the	processor.	Support	that	Program	Generated	by	some	condition	that	occurs	as	a	result	of	an	instruction	execution,
such	as	arithmetic	overflow,	division	by	zero,	attempt	to	execute	an	illegal	machine	instruction,	and	reference	outside	a	user’s	allowed	memory	space.	Timer	Generated	by	a	timer	within	the	processor,	This	allows	the	operating	system	to	perform	certain	functions	on	a	regular	basis.	I/O	Generated	by	an	I/O	controller,	to	signal	normal	completion	of	an
operation	or	to	signal	a	variety	of	error	conditions.	Hardware	failure	Generated	by	a	failure	such	as	power	failure	or	memory	parity	error.	The	processor	is	transferring	data	to	a	printer	using	the	instruction	cycle	scheme	of	Figure	3.3.	After	each	write	operation,	the	processor	will	have	to	pause	and	remain	idle	until	the	printer	catches	up.	He	length	of
this	pause	can	be	on	the	order	of	many	hundreds	or	even	thousands	of	instruction	cycles	that	do	not	involve	memory.	Clearly,	this	is	a	very	wasteful	use	of	the	processor.	With	interrupts,	the	processor	can	be	engaged	in	executing	other	instructions	while	an	I/O	operation	is	in	progress.	Figure	3.7a	illustrates	this	state	of	affairs	for	the	application
referred	to	in	the	preceding	paragraph.	He	user	program	performs	a	series	of	WRITE	calls	inter-leaved	with	processing.	Code	segments	1,2,	and	3	refer	to	sequences	of	instructions	that	do	not	involve	I/O.	The	WRITE	calls	are	calls	to	an	I/O	program	consists	of	three	sections:	•	A	sequence	of	instructions,	labeled	4	in	the	figure,	to	prepare	for	the
actual	I/O	operation.	This	may	include	copying	the	data	to	be	output	into	a	special	buffer,	and	preparing	the	parameters	for	a	device	command.	•	The	actual	I/O	command.	Without	the	use	of	interrupts,	once	this	command	is	issued,	the	program	must	wait	for	the	I/O	device	to	perform	the	requested	function.	He	program	might	wait	by	simply
repeatedly	performing	a	test	operation	to	determine	if	the	I/O	operation	is	done.	96.	Paper	Name:	Computer	Organization	and	Architecture	•	A	sequence	of	instructions,	labeled	5	in	the	figure,	to	complete	the	operation,	This	may	include	setting	a	flag	indicating	the	success	or	failure	of	the	operation.	Because	the	I/P	operation	may	take	a	relatively
long	time	to	complete,	the	I/O	program	is	hung	up	waiting	for	the	operation	to	complete;	hence,	the	user	program	is	stopped	at	point	of	the	WRITE	call	for	some	considerable	period	of	time.	A	more	common	strategy	is	to	use	interrupt	driven	I/O.	This	strategy	allows	the	CPU	to	carry	on	with	its	other	operations	until	the	module	is	ready	to	transfer
data.	When	the	CPU	wants	to	communicate	with	a	device,	it	issues	an	instruction	to	the	appropriate	I/O	module,	and	then	continues	with	other	operations.	When	the	device	is	ready,	it	will	interrupt	the	CPU.	The	CPU	can	then	carry	out	the	data	transfer	as	before.	This	also	removes	the	need	for	the	CPU	to	continually	poll	input	devices	to	see	if	it	must
read	any	data.	When	an	input	device	has	data,	then	the	appropriate	I/O	module	can	interrupt	the	CPU	to	request	a	data	transfer.	An	I/O	module	interrupts	the	CPU	simply	by	activating	a	control	line	in	the	control	bus.	The	sequence	of	events	is	as	follows.	1.	The	I/O	module	interrupts	the	CPU.	2.	The	CPU	finishes	executing	the	current	instruction.	3.
The	CPU	acknowledges	the	interrupt.	4.	The	CPU	saves	its	current	state.	5.	The	CPU	jumps	to	a	sequence	of	instructions	which	will	handle	the	interrupt.	The	situation	is	somewhat	complicated	by	the	fact	that	most	computer	systems	will	have	several	peripherals	connected	to	them.	This	means	the	computer	must	be	able	to	detect	which	device	an
interrupt	comes	from,	and	to	decide	which	interrupt	to	handle	if	several	occur	simultaneously.	This	decision	is	usually	based	on	interrupt	priority.	Some	devices	will	require	response	from	the	CPU	more	quickly	than	others,	for	example,	an	interrupt	from	a	disk	drive	must	be	handled	more	quickly	than	an	interrupt	from	a	keyboard.	Many	systems	use
multiple	interrupt	lines.	This	allows	a	quick	way	to	assign	priorities	to	different	devices,	as	the	interrupt	lines	can	have	different	priorities.	However,	it	is	likely	that	there	will	be	more	devices	than	interrupt	lines,	so	some	other	method	must	be	used	to	determine	which	device	an	interrupt	comes	from.	Most	systems	use	a	system	of	vectored	interrupts.
When	the	CPU	acknowleges	an	interrupt,	the	relevant	device	places	a	word	of	data	(a	vector)	on	the	data	bus.	The	vector	identifies	the	device	which	requires	attention,	and	is	used	by	the	CPU	to	look	up	the	address	of	the	appropriate	interrupt	handing	routine.	97.	Paper	Name:	Computer	Organization	and	Architecture	Memory	Mapped	and	Isolated
I/O	Whether	a	system	uses	programmed	or	interrupt	driven	I/O,	it	must	still	periodically	send	instructions	to	the	I/O	modules.	Two	methods	are	used	for	to	implement	this:	memory-mapped	I/O	and	isolated	I/O.	With	memory-mapped	I/O,	the	I/O	modules	appear	to	the	CPU	as	though	they	occupy	locations	in	main	memory.	To	send	instructions	or
transfer	data	to	an	I/O	module,	the	CPU	reads	or	writes	data	to	these	memory	locations.	This	will	reduce	the	available	address	space	for	main	memory,	but	as	most	modern	systems	use	a	wide	address	bus	this	is	not	normally	a	problem.	With	isolated	I/O,	the	I/O	modules	appear	to	occupy	their	own	address	space,	and	special	instructions	are	used	to
communicate	with	them.	This	gives	more	address	space	for	both	memory	and	I/O	modules,	but	will	increase	the	total	number	of	different	instructions.	It	may	also	reduce	the	flexibility	with	which	the	CPU	may	address	the	I/O	modules	if	less	addressing	modes	are	available	for	the	special	I/O	instructions.	Interrupts	and	the	Instruction	Cycle	With
interrupts,	the	processor	can	be	engaged	in	executing	other	instructions	while	an	I/O	operation	is	in	progress.	Consider	the	flow	of	control	in	Figure	3.7b.As	before	,	the	user	program	reaches	a	point	at	which	it	makes	a	system	call	in	the	form	of	a	WRITE	call	.	The	I/O	program	that	is	invoked	in	this	case	consists	only	of	the	preparation	code	and	the
actual	I/O	command.	After	these	few	instructions	have	been	executed,	control	returns	to	the	user	program.	Meanwhile,	the	external	device	is	busy	accepting	data	from	computer	memory	and	printing	it.	This	I/O	operation	is	conducted	concurrently	with	the	execution	of	instructions	in	the	user	program.	When	the	external	device	becomes	ready	to	be
serviced,	that	is	,	when	it	is	ready	to	accept	more	data	from	the	processor	,	the	I/O	module	for	that	external	device	sends	an	interrupt	request	signal	to	the	processor.	The	processor	responds	by	suspending	operation	of	the	current	program	,	branching	off	to	a	program	to	service	that	particular	I/O	device,	known	as	an	interrupt	handler,	and	resuming
the	original	execution	after	the	device	is	serviced.	The	points	at	which	such	interrupts	occur	are	indicated	by	an	asterisk	(*)	in	Figure.	From	the	point	of	view	of	the	user	program,	an	interrupt	is	just	that	:	an	interruption	of	the	normal	sequence	of	execution.	When	the	interrupt	processing	is	completed,	execution	resumes	(Figure).	Thus	the	user
program	does	not	have	to	contain	any	special	code	to	accommodate	interrupts	;	the	processor	and	the	operating	system	are	responsible	for	suspending	the	user	program	and	then	resuming	it	at	the	same	point.	98.	Paper	Name:	Computer	Organization	and	Architecture	User	Program	Interrupt	Handler	1	2	i	Interrupt	Occurs	Here	i	+	1	M	6	Figure
Transfer	of	control	via	interrupts	Fetch	Cycle	Execute	Interrupts	Cycle	Disabled	Interrupts	Enabled	Interrupts	Cycle	7	Figure	Instruction	cycle	with	interrupts	To	accommodate	interrupts,	an	interrupt	cycle	is	added	to	the	instruction	cycle,	as	shown	in	Figure	3.9.	In	the	interrupt	cycle,	the	processor	checks	to	see	if	any	interrupts	have	occurred,
indicated	by	the	presence	of	an	interrupt	signal.	If	no	interrupts	are	pending,	the	processor	proceeds	to	the	fetch	cycle	and	fetches	the	next	HALT	START	Fetch	Next	Instruction	Execute	Instruction	Check	for	interrupt;	process	interrupt	99.	Paper	Name:	Computer	Organization	and	Architecture	instruction	of	the	current	program.	If	an	interrupt	is
pending,	the	processor	does	the	following:	1.	It	suspends	execution	of	the	current	program	being	executed	and	saves	its	context.	This	means	saving	the	address	of	the	next	instruction	to	be	executed	(current	contents	of	the	program	counter)	and	any	other	data	relevant	to	the	processor’s	current	activity.	2.	It	sets	the	program	counter	to	the	starting
address	of	an	interrupt	handler	routine.	The	processor	now	proceeds	to	the	fetch	cycle	and	fetches	the	first	instruction	in	the	interrupt	handler	program,	which	will	service	the	interrupt.	The	interrupt	handler	program	is	generally	part	of	the	operating	system.	Typically,	this	program	determines	the	nature	of	the	interrupt	and	performs	whatever
actions	are	needed.	For	example,	in	the	example	we	have	been	using,	the	handler	determines	which	I/O	module	generated	the	interrupt,	and	may	branch	to	a	program	that	will	write	more	data	out	to	that	I/O	module.	When	the	interrupt	handler	routine	is	completed,	the	processor	can	resume	execution	of	he	user	program	at	the	point	of	interruption.	It
is	clear	that	there	is	some	overhead	involved	in	this	process.	Extra	instructions	must	be	executed	(in	the	interrupt	handler)	to	determine	the	nature	of	the	interrupt	an	to	decide	on	the	appropriate	action.	Nevertheless,	because	of	the	relatively	large	amount	of	time	that	would	be	wasted	by	simply	waiting	on	an	I/O	operation,	the	processor	can	be
employed	much	ore	efficiently	with	the	use	of	interrupts.	Time	Processor	I/O	I/O	Wait	Operation	Operation	I/O	Operation	Processor	I/O	Wait	Operation	1	1	4	4	2a	5	5	2	5	4	4	3a	5	100.	Paper	Name:	Computer	Organization	and	Architecture	(b)	With	Interrupts	(a)	Without	Interrupts	8	Figure	Program	timing;	short	I/O	wait	To	appreciate	the	gain	in
efficiency,	consider	Figure	which	is	a	timing	diagram	based	on	the	flow	of	control	in	Figures.	Figure	assume	that	the	time	required	for	the	I/O	operation	is	relatively	short:	less	than	the	time	to	complete	the	execution	of	instructions	between	write	operations	in	the	user	program.	The	more	typical	case,	especially	for	a	slow	device	such	as	a	printer,	is
that	the	I/o	operation	will	take	much	more	time	than	executing	a	sequence	of	user	instructions.	Figure	3.7c	indicates	this	state	of	affairs.	In	this	case,	the	user	program	reaches	the	second	RITE	call	before	the	I/O	operation	spawned	by	the	first	call	is	complete.	The	result	is	that	the	user	program	is	hung	up	at	that	point.	When	the	preceding	I/O
operation	is	completed,	this	new	WRITE	call	may	b	processed,	and	a	new	I/O	operation	may	be	started.	Figure	3.11	shows	the	timing	for	this	situation	with	and	without	the	use	of	interrupts.	We	can	see	that	there	is	still	a	gain	in	efficiency	because	part	of	the	time	during	which	the	I/O	operation	is	under	way	overlaps	with	the	execution	of	user
instructions.	Figure	shows	a	revised	instruction	cycle	state	diagram	that	includes	interrupt	cycle	processing.	Time	Processor	I/O	I/O	Wait	Operation	Operation	Processor	Wait	I/O	Operation	1	1	4	4	2	5	2	5	4	4	5	3	3b	3	101.	Paper	Name:	Computer	Organization	and	Architecture	Processor	Processor	Wait	Wait	(b)	With	Interrupts	(a)	Without	Interrupts	9
Figure	Program	timing;	short	I/O	wait	10	Multiple	Interrupts	The	discussion	so	far	has	only	discussed	the	occurrence	of	a	single	interrupt.	Suppose,	however,	that	multiple	interrupts	can	occur.	For	example,	a	program	may	be	receiving	data	from	a	communications	line	and	printing	results.	The	printer	will	generate	an	interrupt	every	time	that	it
completes	a	print	operation.	The	communication	line	controller	will	generate	an	interrupt	every	time	a	unit	of	data	arrives.	The	unit	could	either	be	a	single	character	or	a	block,	depending	on	the	nature	of	the	communications	discipline.	In	any	case,	it	is	possible	for	a	communication	interrupt	to	occur	while	a	printer	interrupt	is	being	processed.	Two
approaches	can	be	taken	to	dealing	with	multiple	interrupts.	The	first	is	to	disable	interrupts	while	an	interrupt	is	being	processed.	A	disabled	interrupt	simply	means	that	the	processor	can	and	will	ignore	that	interrupt	request	signal.	If	an	interrupt	occurs	during	this	time,	it	generally	remains	pending	and	will	be	checked	by	the	processor	after	the
processor	has	enabled	interrupts.	Thus,	when	a	user	program	is	executing	and	an	interrupt	occurs,	interrupts	are	disabled	immediately.	After	the	ther	interrupt	handler	routine	completes,	interrupts	are	enabled	before	resuming	the	user	program,	and	the	processor	checks	to	see	if	additional	interrupts	have	occurred.	This	approach	is	nice	and	simple,
as	interrupts	are	handled	in	strict	sequential	order	(figure)	The	drawback	to	the	above	approach	is	that	it	does	not	take	into	account	relative	priority	or	time-critical	needs.	For	example,	when	input	arrives	from	the	communications	line,	it	may	need	to	be	absorbed	rapidly	to	make	room	for	more	input.	If	the	first	batch	of	input	has	not	been	processed
before	the	second	batch	arrives,	data	may	be	lost.	A	second	approach	is	to	define	priorities	for	interrupts	and	to	allow	an	interrupt	of	higher	priority	to	cause	a	lower-priority	interrupt	handler	to	be	itself	interrupted(figure).	5	5	3	102.	Paper	Name:	Computer	Organization	and	Architecture	As	an	example	of	this	second	approach,	consider	a	system	with
three	I/O	devices:	a	printer,	a	disk	,	and	a	communications	line,	with	increasing	priorities	of	2,4	and	5	respectively.	Figure	3.14	illustrates	a	possible	sequence.	A	user	program	begins	at	t	=	0	.	At	t	=10,	a	printer	interrupt	occur	;	user	information	is	placed	on	the	system	stack,	and	execution	continues	at	the	printer	interrupt	service	routine	(ISR).	While
this	routine	is	still	executing,	at	t	=	15,	a	communications	interrupt	occurs.	Since	the	communications	line	has	higher	priority	than	the	printer,	the	interrupt	is	honored.	The	printer	ISR	is	interrupted,	its	state	is	pushed	onto	the	stack,	and	execution	continues	at	the	communications	ISR.	While	this	routine	is	executing	,	a	disk	interrupt	occurs	(t	=	20).
Since	this	interrupt	is	of	lower	priority,	it	is	simply	held,	and	the	communications	ISR	runs	to	completion.	When	the	communications	ISR	is	complete	(	t	=	25),	the	previous	processor	state	is	restored,	which	is	the	execution	of	the	printer	ISR.	However,	before	even	a	single	instruction	in	that	routine	can	be	executed,	the	processor	honors	he	higher-
priority	disk	interrupt	and	control	transfers	to	the	disk	ISR.	Only	when	that	routine	is	complete	(t	=	35)	is	the	printer	ISR	resumed.	When	that	routine	completes	(t	=	40),	control	finally	returns	to	the	user	program.	6.2	Priority	Interrupt	A	priority	interrupt	establishes	a	priority	to	decide	which	condition	is	to	be	serviced	first	when	two	or	more	requests
arrive	simultaneously.	The	system	may	also	determine	which	conditions	are	permitted	to	interrupt	the	computer	while	another	interrupt	is	being	serviced.	Higher-priority	interrupt	levels	are	assigned	to	requests,	which	if	delayed	or	interrupted,	could	have	serious	consequences.	Devices	with	high-	speed	transfers	are	given	high	priority,	and	slow
devices	receive	low	priority.	When	two	devices	interrupt	the	computer	at	the	same	time,	the	computer	services	the	device,	with	the	higher	priority	first.	Establishing	the	priority	of	simultaneous	interrupts	can	be	done	by	software	or	hardware.	We	can	use	a	polling	procedure	to	identify	the	highest-priority.	There	is	one	common	branch	address	for	all
interrupts.	The	program	that	takes	care	of	interrupts	begins	at	the	branch	address	and	polls	the	interrupt	sources	in	sequence.	The	order	in	which	they	are	tested	determines	the	priority	of	each	interrupt.	We	test	the	highest-priority	source	first,	and	if	its	interrupt	signal	is	on,	control	branches	to	a	service	routine	for	this	source.	Otherwise,	the	next-
lower-priority	source	is	tested,	and	so	on.	Thus	the	initial	service	routine	interrupts	consists	of	a	program	that	tests	the	interrupt	sources	in	sequence	and	branches	to	one	of	many	possible	service	routines.	The	particular	service	routine	reached	belongs	to	the	highest-priority	device	among	all	devices	that	interrupted	the	computer.	6.2.1	Daisy-
Chaining	Priority	103.	Paper	Name:	Computer	Organization	and	Architecture	The	daisy-chaining	method	has	a	serial	connection	of	all	devices	that	request	an	interrupt.	The	device	with	the	highest	priority	is	kept	in	the	first	position,	followed	by	lower-priority	devices	and	so	on.	This	method	of	connection	is	shown	in	Fig.6.32.	The	interrupt	request	line
is	common	to	all	devices	and	forms	a	wired	logic	connection.	If	any	device	has	its	interrupt	signal	in	the	low-level	state,	the	interrupt	line	goes	to	the	low-level	state	and	enables	the	interrupt	input	in	the	CPU.	When	no	interrupts	are	pending,	the	interrupt	line	stays	in	the	high-level	state	and	as	a	result	CPU	does	not	recognize	any	interrupt.	This	is
equivalent	to	a	negative	logic	OR	operation.	The	CPU	responds	to	an	interrupt	request	by	enabling	the	interrupt	acknowledge	line.	This	signal	is	received	by	device	1	at	its	PI	(priority	in)	input.	The	acknowledge	signal	passes	on	to	the	next	device	through	the	PO	(priority	out)	output	only	if	device	1	is	not	requesting	an	interrupt.	If	device	I	has	a
pending	interrupt,	it	blocks	the	acknowledge	signal	from	the	next	device	by	placing	a	0	in	the	PO	output.	It	then	proceeds	to	insert	its	own	interrupt	vector	address	(VAD)	into	the	data	bus	for	the	CPU	to	use	during	the	interrupt	cycle.	A	device	with	PI=0	input	generates	a	0	in	its	PO	output	to	inform	the	next-lower-priority	device	that	the	acknowledge
signal	has	been	blocked.	A	device	that	makes	a	request	for	an	interrupt	and	has	a	I	in	its	Pi	input	will	intercept	the	acknowledge	signal	by	placing	a	0	in	its	PO	output.	If	the	device	does	not	have	pending	interrupts,	it	transmits	the	acknowledge	signal	to	the	next	device	by	placing	a	1	in	its	PO	output.	Thus	the	device	with	PI	=	1	and	PO	=	0	is	the	one
with	the	highest	priority	that	is	requesting	an	interrupt,	and	this	device	places	its	VAD	on	the	data	bus.	The	daisy	chain	arrangement	gives	the	highest	priority	to	the	device	that	receives	the	interrupt	acknowledge	signal	from	the	CPU.	The	farther	the	device	is	from	the	first	position,	the	lower	is	its	priority.	Figure	6.32:	Daisy-chain	priority	interrupt
Figure	6.33	shows	the	internal	logic	that	must	be	included	within	each	device	when	connected	in	the	daisy-chaining	scheme.	The	device	sets	its	RF	flip-flop	when	it	wants	to	interrupt	the	CPU.	The	output	of	the	RF	flip-flop	goes	through	an	open-collector	inverter	(a	circuit	that	provides	the	wired	logic	for	the	common	interrupt	line).	If	PI	=	0,	both	PO
and	the	enable	line	to	VAD	are	equal	to	0,	irrespective	of	the	value	of	RF.	If	PI	=	1	and	RF=	0,	then	PO	=	1	and	the	vector	address	is	disabled.	This	condition	passes	the	104.	Paper	Name:	Computer	Organization	and	Architecture	acknowledge	signal	to	the	next	device	through	PO.	The	device	is	active	when	PI	=	1	and	RF	=	1.	This	condition	places	a	0
in	PO	and	enables	the	vector	address	for	the	data	bus.	It	is	assumed	that	each	device	has	its	own	distinct	vector	address.	The	RF	flip-flop	is	reset	after	a	sufficient	delay	to	ensure	that	the	CPU	has	received	the	vector	address.	6.2.2	Parallel	Priority	Interrupt	The	method	uses	a	register	whose	bits	are	set	separately	by	the	interrupt	signal	from	each
device.	Now	we	establish	the	priority	according	to	the	position	of	the	bits	in	the	register.	In	addition	to	the	interrupt	register,	the	circuit	may	include	a	mask	register	whose	purpose	is	to	control	the	status	of	each	interrupt	request.	The	mask	register	can	be	programmed	to	disable	lower-priority	interrupts	while	a	higher-priority	device	is	being
serviced.	It	can	also	provide	a	facility	that	allows	a	high-priority	device	to	interrupt	the	while	a	lower-priority	device	is	being	serviced.	Figure	6.33:	One	stage	of	the	daisy-chain	priority	arrangement	Fig.	6.34	shows	the	priority	logic	for	a	system	of	four	interrupt	sources.	It	has	an	interrupt	register.	The	bits	of	this	register	are	external	conditions	and
cleared	by	program	instructions.	The	magnetic	disk,	being	a	high-speed	device,	is	given	the	highest	priority.	The	printer	has	the	next	priority,	followed	by	a	character	reader	and	a	keyboard.	The	mask	register	has	the	same	number	of	bits	as	the	interrupt	register.	By	means	of	program	instructions,	it	is	possible	to	set	or	reset	any	bit	in	the	mask
register.	Each	interrupt	bit	and	its	corresponding	mask	bit	are	applied	to	an	AND	gate	to	produce	the	four	inputs	to	a	priority	encoder.	In	this	way	an	interrupt	is	recognized	only	105.	Paper	Name:	Computer	Organization	and	Architecture	if	its	corresponding	mask	bit	is	set	to	1	by	the	program.	The	priority	encoder	generates	two	bits	of	the	vector
address,	which	is	transferred	to	the	CPU.	Another	output	from	the	encoder	sets	an	interrupt	status	flip-flop	IST	when	an	interrupt	that	is	not	masked	occurs.	The	interrupt	enable	flip-flop	IEN	can	be	set	or	cleared	by	the	program	to	provide	an	overall	control	over	the	interrupt	system.	The	outputs	of	1ST	AND	with	IEN	provide	a	common	interrupt
signal	for	the	CPU.	The	interrupt	acknowledge	INTACK	signal	form	the	CPU	enables	the	bus	buffers	in	the	output	register	and	a	vector	address	VAD	is	placed	into	the	data	bus.	We	will	now	explain	the	priority	encoder	circuit	and	then	discuss	the	interaction	between	the	priority	interrupt	controller	and	the	CPU.	Figure	6.34:	Priority	interrupt
hardware	106.	Paper	Name:	Computer	Organization	and	Architecture	6.2.3	Interrupt	Cycle	The	interrupt	makes	flip-flop	IEN	so	that	can	be	set	or	cleared	by	program	instructions.	When	IEN	is	cleared,	the	interrupt	request	coming	from	1ST	is	neglected	by	the	CPU.	The	program-controlled	IEN	bit	allows	the	programmer	to	choose	whether	to	use	the
interrupt	facility.	If	an	instruction	to	clear	IEN	has	been	inserted	in	the	program,	it	means	that	the	user	does	not	want	his	program	to	be	interrupted.	An	instruction	to	set	IEN	indicates	that	the	interrupt	facility	will	be	used	while	the	current	program	is	running.	Most	computers	include	internal	hardware	that	clears	IEN	to	0	every	time	an	interrupt	is
acknowledged	by	the	processor.	CPU	checks	IEN	and	the	interrupt	signal	from	IST	at	the	end	of	each	instruction	cycle	the.	If	either	0,	control	continues	with	the	next	instruction.	If	both	IEN	and	IST	are	equal	to	1,	the	CPU	goes	to	an	interrupt	cycle.	During	the	interrupt	cycle	the	CPU	performs	the	following	sequence	of	micro-operations:	SP	←SP	–	1
Decrement	stack	pointer	M	[SP]	←	PC	Push	PC	into	stack	INTACK	←1	Enable	interrupt	acknowledge	PC	←VAD	Transfer	vector	address	to	PC	IEN	←0	Disable	further	interrupts	Go	to	fetch	next	instruction	The	return	address	is	pushed	from	PC	into	the	stack.	It	then	acknowledges	the	interrupt	by	enabling	the	INTACK	line.	The	priority	interrupt	unit
responds	by	placing	a	unique	interrupt	vector	into	the	CPU	data	bus.	The	CPU	transfers	the	vector	address	into	PC	and	clears	IEN	prior	to	going	to	the	next	fetch	phase.	The	instruction	read	from	memory	during	the	next	fetch	phase	will	be	the	one	located	at	the	vector	address.	Software	Routines	A	priority	interrupt	system	uses	both	hardware	and
software	techniques.	Now	we	discuss	the	software	routines	for	this.	The	computer	must	also	have	software	routines	for	servicing	the	interrupt	requests	and	for	controlling	the	interrupt	hardware	registers.	Figure	6.35	shows	the	programs	that	must	reside	in	memory	for	handling	the	interrupt	system.	Each	device	has	its	own	service	program	that	can
be	read	through	a	jump	107.	Paper	Name:	Computer	Organization	and	Architecture	(JMP)	instruction	stored	at	the	assigned	vector	address.	The	symbolic	name	of	each	routine	represents	the	starting	address	of	the	service	program.	The	stack	shown	in	the	diagram	is	used	for	storing	the	return	address	after	each	interruption.	Figure	6.35:	Programs
stored	in	memory	for	servicing	interrupts	Now	we	take	an	example	to	illustrate	it.	Let	the	keyboard	sets	interrupt	bit	while	the	CPU	is	executing	the	instruction	in	location	749	of	main	program.	At	the	end	of	the	instruction	cycle,	the	computer	goes	to	interrupt	cycle.	It	stores	the	return	address	750	in	the	stack	and	then	accepts	the	vector	address
00000011	from	the	bus	and	transfers	it	to	PC.	The	instruction	in	location	3	is	executed	next,	resulting	in	transfer	of	control	to	the	KBD	routine.	Now	suppose	that	the	disk	sets	its	interrupt	bit	when	the	CPU	is	executing	the	instruction	at	address	255	in	the	KBD	program.	Address	256	is	pushed	into	the	stack	and	control	is	transferred	to	the	DISK
service	program.	The	last	instruction	in	each	routine	is	a	return	from	interrupt	instruction.	When	the	disk	service	program	is	completed,	the	return	instruction	pops	the	stack	and	places	256	into	PC.	This	returns	control	to	the	KBD	routine	to	continue	servicing	the	keyboard.	At	the	end	of	the	KBD	program,	the	last	instruction	pops	the	stack	and
returns	control	to	the	main	program	at	address	750.	Thus,	a	higher-prior	device	can	interrupt	a	lower-priority	device.	It	is	assumed	that	the	time	spent	in	servicing	the	high-priority	interrupt	is	short	compared	to	the	transfer	rate	of	the	low-priority	device	so	that	no	loss	of	information	takes	place.	Initial	and	Final	Operations	We	should	remember	that
the	interrupt	enable	IEN	is	cleared	at	the	end	of	an	interrupt	cycle.	This	flip-flop	must	be	set	again	to	enable	higher-priority	interrupt	requests,	but	not	before	lower-priority	interrupts	are	disabled.	The	initial	sequence	of	each	interrupt	108.	Paper	Name:	Computer	Organization	and	Architecture	service	routine	must	have	instructions	to	control	the
interrupt	hardware	in	the	following	manner:	1.	Clear	lower-level	mask	register	bits.	2.	Clear	interrupt	status	bit	1ST.	3.	Save	contents	of	processor	registers.	4.	Set	interrupt	enable	bit	IEN.	5.	Proceed	with	service	routine.	The	final	sequence	in	each	interrupt	service	routine	must	have	instructions	to	control	the	interrupt	hardware	in	the	following
manner:	1.	Clear	interrupt	enable	bit	IEN.	2.	Restore	contents	of	processor	registers.	3.	Clear	the	bit	in	the	interrupt	register	belonging	to	the	source	that	has	been	serviced.	4.	Set	lower-level	priority	bits	in	the	mask	register.	5.	Restore	return	address	into	PC	and	set	IEN.	6.3	Direct	Memory	Access	Although	interrupt	driven	I/O	is	much	more	efficient
than	program	controlled	I/O,	all	data	is	still	transferred	through	the	CPU.	This	will	be	inefficient	if	large	quantities	of	data	are	being	transferred	between	the	peripheral	and	memory.	The	transfer	will	be	slower	than	necessary,	and	the	CPU	will	be	unable	to	perform	any	other	actions	while	it	is	taking	place.	6.3.1	DMA	Controller	Many	systems
therefore	use	an	additional	strategy,	known	as	direct	memory	access	(DMA).	DMA	uses	an	additional	piece	of	hardware	-	a	DMA	controller.	The	DMA	controller	can	take	over	the	system	bus	and	transfer	data	between	an	I/O	module	and	main	memory	without	the	intervention	of	the	CPU.	Whenever	the	CPU	wants	to	transfer	data,	it	tells	the	DMA
controller	the	direction	of	the	transfer,	the	I/O	module	involved,	the	location	of	the	data	in	memory,	and	the	size	of	the	block	of	data	to	be	transferred.	It	can	then	continue	with	other	instructions	and	the	DMA	controller	will	interrupt	it	when	the	transfer	is	complete.	The	CPU	and	the	DMA	controller	cannot	use	the	system	bus	at	the	same	time,	so
some	way	must	be	found	to	share	the	bus	between	them.	One	of	two	methods	is	normally	used.	Burst	mode	The	DMA	controller	transfers	blocks	of	data	by	halting	the	CPU	and	controlling	the	system	bus	for	the	duration	of	the	transfer.	The	transfer	will	be	as	quick	as	the	weakest	109.	Paper	Name:	Computer	Organization	and	Architecture	link	in	the
I/O	module/bus/memory	chain,	as	data	does	not	pass	through	the	CPU,	but	the	CPU	must	still	be	halted	while	the	transfer	takes	place.	Cycle	stealing	The	DMA	controller	transfers	data	one	word	at	a	time,	by	using	the	bus	during	a	part	of	an	instruction	cycle	when	the	CPU	is	not	using	it,	or	by	pausing	the	CPU	for	a	single	clock	cycle	on	each
instruction.	This	may	slow	the	CPU	down	slightly	overall,	but	will	still	be	very	efficient.	1.	Channel	I/O	This	is	a	system	traditionally	used	on	mainframe	computers,	but	is	becoming	more	common	on	smaller	systems.	It	is	an	extension	of	the	DMA	concept,	where	the	DMA	controller	becomes	a	full-scale	computer	system	itself	which	handles	all
communication	with	the	I/O	modules.	2.	I/O	Interfaces	The	interface	of	an	I/O	module	is	the	connection	to	the	peripheral(s)	attached	to	it.	The	interface	handles	synchronisation	and	control	of	the	peripheral,	and	the	actual	transfer	of	data.	For	example,	to	send	data	to	a	peripheral,	the	sequence	of	events	would	be	as	follows.	a)	The	I/O	module	sends	a
control	signal	to	the	peripheral	requesting	permission	to	send	data.	b)	The	peripheral	acknowledges	the	request.	c)	The	I/O	module	sends	the	data	(this	may	be	either	a	word	at	a	time	or	a	block	at	a	time	depending	on	the	peripheral).	d)	The	peripheral	acknowledges	receipt	of	the	data.	This	process	of	synchronisation	is	known	as	handshaking.	The
internal	buffer	allows	the	I/O	module	to	compensate	for	some	of	the	difference	in	the	speed	at	which	the	interface	can	communicate	with	the	peripheral,	and	the	speed	of	the	system	bus.	I/O	interfaces	can	be	divided	into	two	main	types.	3.	Parallel	interfaces	There	are	multiple	wires	connecting	the	I/O	module	to	the	peripheral,	and	bits	of	data	are
transferred	simultaneously,	as	they	are	over	the	data	bus.	This	type	of	interface	is	used	for	high	speed	peripherals	such	as	disk	drives.	4.	Serial	interfaces	Only	a	single	wire	connects	the	I/O	module	to	the	peripheral,	and	data	must	be	transferred	one	bit	at	a	time.	This	is	used	for	slower	peripherals	such	as	printers	and	keyboards.	110.	Paper	Name:
Computer	Organization	and	Architecture	5.	I/O	Function	Thus	far,	we	have	discussed	the	operation	of	the	computer	a	s	controlled	by	the	CPU,	and	we	have	looked	primarily	at	the	interaction	of	CPU	and	memory.	The	discussion	has	only	alluded	to	the	role	of	the	I/O	component.	This	role	is	discussed	in	detail	in	chapter	6,	but	a	brief	summary	is	in
order	here.	An	I/O	module	can	exchange	data	directly	with	the	CPU.	Just	as	the	CPU	can	initiate	a	read	or	write	with	memory,	designating	the	address	of	a	specific	location,	the	CPU	can	also	read	data	form	or	write	data	to	an	I/O	module.	In	this	latter	case,	the	CPU	identifies	a	specific	device	that	is	controlled	by	a	particular	I/O	module.	Thus,	an
instruction	sequence	similar	in	form	to	that	of	Figure	3.5	could	occur,	with	I/O	instructions	rather	than	with	memory-referencing	instructions.	In	some	cases,	it	is	desirable	to	allow	I.O	exchanges	to	occur	directly	with	memory.	In	such	a	case,	the	CPU	grants	to	an	I/O	module	the	authority	to	read	from	or	write	to	memory,	so	that	the	I.O	memory
transfer	can	occur	without	tying	up	the	CPU.	During	such	a	transfer,	the	I/O	module	issues	read	or	write	commands	to	memory,	relieving	the	CPU	of	responsibility	for	the	exchange.	This	operation	is	known	as	direct	memory	access	(DMA),	an	it	will	be	examined	in	detail	in	chapter	6.	For	now,	all	that	we	need	to	know	is	that	the	interconnection
structure	of	the	computer	may	need	to	allow	for	direct	memory	–	I/O	interaction.	This	section	introduces	the	concepts	of	input/output	devices,	modules	and	interfaces.	It	considers	the	various	strategies	used	for	communication	between	the	CPU	and	I/O	modules,	and	the	interface	between	an	I/O	module	and	the	device(s)	connected	to	it.	Some	common
I/O	devices	are	considered	in	the	last	section.	6.3.2	DMA	Transfer	There	are	three	independent	channels	for	DMA	transfers.	Each	channel	receives	its	trigger	for	the	transfer	through	a	large	multiplexer	that	chooses	from	among	a	large	number	of	signals.	When	these	signals	activate,	the	transfer	occurs.	The	DMAxTSELx	bits	of	the	DMA	Control
Register	0	(DMACTL0).	The	DMA	controller	receives	the	trigger	signal	but	will	ignore	it	under	certain	conditions.	This	is	necessary	to	reserve	the	memory	bus	for	reprogramming	and	non-maskable	interrupts	etc.	The	controller	also	handles	conflicts	for	simultaneous	triggers.	The	priorities	can	be	adjusted	using	the	DMA	Control	Register	1
(DMACTL1).	When	multiple	triggers	happen	simultaneously,	they	occur	in	order	of	module	priority.	The	DMA	trigger	is	then	passed	to	the	module	whose	trigger	activated.	The	DMA	channel	will	copy	the	data	from	the	starting	memory	location	or	block	to	the	destination	memory	location	or	block.	There	are	many	variations	on	this,	and	they	are
controlled	by	the	DMA	Channel	x	Control	Register	(DMAxCTL):	111.	Paper	Name:	Computer	Organization	and	Architecture	Single	Transfer	-	each	trigger	causes	a	single	transfer.	The	module	will	disable	itself	when	DMAxSZ	number	of	transfers	have	occurred	(setting	it	to	zero	prevents	transfer).	The	DMAxSA	and	DMAxDA	registers	set	the	addresses
to	be	transferred	to	and	from.	The	DMAxCTL	register	also	allows	these	addresses	to	be	incremented	or	decremented	by	1	or	2	bytes	with	each	transfer.	This	transfer	halts	the	CPU.	Block	Transfer	-	an	entire	block	is	transferred	on	each	trigger.	The	module	disables	itself	when	this	block	transfer	is	complete.	This	transfer	halts	the	CPU,	and	will
transfer	each	memory	location	one	at	a	time.	This	mode	disables	the	module	when	the	transfer	is	complete.	Burst-Block	Transfer	-	this	is	very	similar	to	Block	Transfer	mode	except	that	the	CPU	and	the	DMA	transfer	can	interleave	their	operation.	This	reduces	the	CPU	to	20%	while	the	DMA	is	going	on,	but	the	CPU	will	not	be	stopped	altogether.
The	interrupt	occurs	when	the	block	has	completely	transferred.	This	mode	disables	the	module	when	the	transfer	is	complete.	Repeated	Single	Transfer	-	the	same	as	Single	Transfer	mode	above	except	that	the	module	is	not	disabled	when	the	transfer	is	complete.	Repeated	Block	Transfer	-	the	same	as	Block	Transfer	mode	above	except	that	the
module	is	not	disabled	when	the	transfer	is	complete.	Repeated	Burst-Block	Transfer	-	the	same	as	Burst	Block	Transfer	mode	above	except	that	the	module	is	not	disabled	when	the	transfer	is	complete.	Writing	to	flash	requires	setting	the	DMAONFETCH	bit.	If	this	is	not	done,	the	results	of	the	DMA	operation	are	“unpredictable.”	Also,	the	behavior
and	settings	of	the	DMA	module	should	only	be	modified	when	the	module	is	disabled.	The	setting	and	triggers	are	highly	configurable,	allowing	both	edge	and	level	triggering.	The	variety	of	settings	is	detailed	in	the	DMA	chapter	of	the	users	guide.	Also,	it	is	important	to	note	that	interrupts	will	not	be	acknowledged	during	the	DMA	transfer
because	the	CPU	is	not	active.	Each	DMA	channel	has	its	own	flag,	but	the	interrupt	vector	is	shared	with	the	DAC.	This	necessitates	some	software	checking	to	handle	interrupts	with	both	modules	enabled.	6.4	Input-output	Processor	(IOP)	The	CPU	or	processor	is	the	part	that	makes	the	computer	smart.	It	is	a	single	integrated	circuit	referred	to	as
a	microprocessor.	The	earlier	microprocessors	were	Intel	8080	or	8086,	they	were	very	slow.	Then	came	faster	models	from	Intel	such	as	80286,	80386,	80486	and	now	Pentium	processors.	Each	of	these	vary	in	speed	of	their	operation.	The	AT	compatibles	–	80286	onwards,	run	in	one	of	the	two	modes:	•	Real	mode	112.	Paper	Name:	Computer
Organization	and	Architecture	•	Protected	mode	The	processor	complex	is	the	name	of	the	circuit	board	that	contains	the	main	system	processor	and	any	other	circuitry	directly	related	to	it,	such	as	clock	control,	cache,	and	so	forth.	The	processor	complex	design	allows	the	user	to	easily	upgrade	the	system	later	to	a	new	processor	type	by	changing
one	card.	In	effect,	it	amounts	to	a	modular	motherboard	with	a	replaceable	processor	section.	Latest	designs	all	incorporate	the	upgradable	processor.	Intel	has	designed	all	486,	Pentium,	Pentium	MMX,	and	Pentium	Pro	processors	to	be	upgradable	to	faster	(sometimes	called	OverDrive)	processors	in	the	future	by	simply	swapping	(or	adding)	the
new	processor	chip.	Changing	only	the	processor	chip	for	a	faster	one	is	the	easiest	and	generally	most	cost-effective	way	to	upgrade	without	changing	the	entire	motherboard.	A	computer	may	incorporate	one	or	more	external	processors	and	assign	them	the	task	of	communicating	directly	with	all	I/O	devices.	An	input-output	processor	(IOP)	may	be
classified	as	a	processor	with	direct	memory	access	capability	that	communicates	with	I/O	devices.	In	this	configuration,	the	computer	system	can	be	divided	into	a	memory	unit,	and	a	number	of	processors	comprised	of	the	CPU	and	one	or	more	IOPs.	Each	IOP	takes	care	of	input	and	output	tasks,	relieving	the	CPU	from	the	housekeeping	chores
involved	in	I/O	transfers.	The	IOP	is	similar	to	a	CPU	except	that	it	is	designed	to	handle	the	details	of	I/O	processing.	Unlike	the	DMA	controller	that	must	be	set	up	entirely	by	the	CPU,	the	IOP	can	fetch	and	execute	its	own	instructions.	IOP	instructions	are	specially	designed	to	facilitate	I/O	transfers.	In	addition,	the	IOP	can	perform	other
processing	tasks,	such	as	arithmetic,	logic,	branching,	and	code	translation.	The	block	diagram	of	a	computer	with	two	processors	is	shown	in	Figure	6.39.	The	memory	unit	occupies	a	central	position	and	can	communicate	with	each	processor	by	means	of	direct	memory	access.	The	CPU	is	responsible	for	processing	data	needed	in	the	solution	of
computational	tasks.	The	IOP	provides	a	path	for	transfer	of	data	between	various	peripheral	deices	and	the	memory	unit.	Figure	6.39:	Block	diagram	of	a	computer	with	I/O	processor	113.	Paper	Name:	Computer	Organization	and	Architecture	The	data	formats	of	peripheral	devices	differ	from	memory	and	CPU	data	formats.	The	IOP	must	structure
data	words	from	many	different	sources.	For	example,	it	may	be	necessary	to	take	four	bytes	from	an	input	device	and	pack	them	into	one	32-bit	word	before	the	transfer	to	memory.	Data	are	gathered	in	the	IOP	at	the	device	rate	and	bit	capacity	while	the	CPU	is	executing	its	own	program.	After	the	input	data	are	assembled	into	a	memory	word,
they	are	transferred	from	IOP	directly	into	memory	by	"stealing"	one	memory	cycle	from	the	CPU.	Similarly,	an	output	word	transferred	from	memory	to	the	IOP	is	directed	from	the	IOP	to	the	output	device	at	the	device	rate	and	bit	capacity.	The	communication	between	the	IOP	and	the	devices	attached	to	it	is	similar	to	the	program	control	method
of	transfer.	The	way	by	which	the	CPU	and	IOP	communicate	depends	on	the	level	of	sophistication	included	in	the	system.	In	most	computer	systems,	the	CPU	is	the	master	while	the	IOP	is	a	slave	processor.	The	CPU	is	assigned	the	task	of	initiating	all	operations,	but	I/O	instructions	are	execute	in	the	IOP.	CPU	instructions	provide	operations	to
start	an	I/O	transfer	and	also	to	test	I/O	status	conditions	needed	for	making	decisions	on	various	I/O	activities.	The	IOP,	in	turn,	typically	asks	for	CPU	attention	by	means	of	an	interrupt.	It	also	responds	to	CPU	requests	by	placing	a	status	word	in	a	prescribed	location	in	memory	to	be	examined	later	by	a	CPU	program.	When	an	I/O	operation	is
desired,	the	CPU	informs	the	IOP	where	to	find	the	I/O	program	and	then	leaves	the	transfer	details	to	the	IOP.	6.4.1	CPU-IOP	Communication	There	are	many	form	of	the	communication	between	CPU	and	IOP.	These	are	depending	on	the	particular	computer	considered.	In	most	cases	the	memory	unit	acts	as	a	message	center	where	each	processor
leaves	information	for	the	other.	To	appreciate	the	operation	of	a	typical	IOP,	we	will	illustrate	by	a	specific	example	the	method	by	which	the	CPU	and	IOP	communicate.	This	is	a	simplified	example	that	omits	many	operating	details	in	order	to	provide	an	overview	of	basic	concepts.	The	sequence	of	operations	may	be	carried	out	as	shown	in	the
flowchart	of	Fig.	6.40.	The	CPU	sends	an	instruction	to	test	the	IOP	path.	The	IOP	responds	by	inserting	a	status	word	in	memory	for	the	CPU	to	check.	The	bits	of	the	status	word	indicate	the	condition	of	the	IOP	and	I/O	device,	such	as	IOP	overload	condition,	device	busy	with	another	transfer,	or	device	ready	for	I/O	transfer.	The	CPU	refers	to	the
status	word	in	memory	to	decide	what	to	do	next.	If	all	is	in	order,	the	CPU	sends	the	instruction	to	start	I/O	transfer.	The	memory	address	received	with	this	instruction	tells	the	IOP	where	to	find	its	program.	114.	Paper	Name:	Computer	Organization	and	Architecture	Figure	6.40:	CPU-IOP	communication	The	CPU	can	now	continue	with	another
program	while	the	IOP	is	busy	with	the	I/O	program.	Both	programs	refer	to	memory	by	means	of	DMA	transfer.	When	the	IOP	terminates	the	execution	of	its	program,	it	sends	an	interrupt	request	to	the	CPU.	The	CPU	responds	to	the	interrupt	by	issuing	an	instruction	to	read	the	status	from	the	IOP.	The	IOP	responds	by	placing	the	contents	of	its
status	report	into	a	specified	memory	location.	The	IOP	takes	care	of	all	data	transfers	between	several	I/O	units	and	the	memory	while	the	CPU	is	processing	another	program.	The	IOP	and	CPU	are	competing	for	the	use	of	memory,	so	the	number	of	devices	that	can	be	in	operation	is	limited	by	the	access	time	of	the	memory.	IBM	370	I/O	Channel	In
the	IBM	370,	the	I/O	processor	computer	is	known	as	a	channel.	A	typical	computer	system	configuration	includes	a	number	of	channels	with	each	channel	attached	to	one	or	more	I/O	devices.	There	are	three	types	of	channels:	multiplexer,	selector,	and	block-	multiplexer.	The	multiplexer	channel	can	be	connected	to	a	number	of	slow-	and	medium-
speed	devices	and	is	capable	of	operating	with	a	number	of	I/O	devices	simultaneously.	The	selector	channel	is	designed	to	handle	one	I/O	operation	at	a	time	and	is	normally	used	to	control	one	high-speed	device.	115.	Paper	Name:	Computer	Organization	and	Architecture	The	CPU	communicates	directly	with	the	channels	through	dedicated	control
lines	and	indirectly	through	reserved	storage	areas	in	memory.	Figure	6.41	shows	the	word	formats	associated	with	the	channel	operation.	The	I/O	instruction	format	has	three	fields:	operation	code,	channel	address,	and	device	address.	The	computer	system	may	have	a	number	of	channels,	and	each	is	assigned	an	address.	Similarly,	each	channel
may	be	connected	to	several	devices	and	each	device	is	assigned	an	address.	The	operation	code	specifies	one	of	eight	I/O	instructions:	start	I/O,	start	I/O	fast	release,	test	I/O,	clear	I/O,	halt	I/O,	halt	device,	test	channel,	and	store	channel	identification.	The	addressed	channel	responds	to	each	of	the	I/O	instructions	and	executes	it.	It	also	sets	one	of
four	condition	codes	in	a	processor	register	called	PSW	(processor	status	word).	The	CPU	can	check	the	condition	code	in	the	PSW	to	determine	the	result	of	the	I/O	operation.	The	meaning	of	the	four	condition	codes	is	different	for	each	I/O	instruction.	But,	in	general,	they	specify	whether	the	channel	or	the	device	is	busy,	whether	or	not	it	is
operational,	whether	interruptions	are	pending,	if	the	I/O	operation	had	started	successfully,	and	whether	a	status	word	was	stored	in	memory	by	the	channel.	The	format	of	the	channel	status	word	is	shown	in	Fig.	6.41(b).	It	is	always	stored	in	location	64	in	memory.	The	key	field	is	a	protection	mechanism	used	to	prevent	unauthorized	access	by	one
user	to	information	that	belongs	to	another	user	or	to	the	operating	system.	The	address	field	in	the	status	word	gives	the	address	of	the	last	command	word	used	by	the	channel.	The	count	field	gives	the	residual	count	when	the	transfer	was	terminated.	The	count	field	will	show	zero	if	the	transfer	was	completed	successfully.	The	status	field
identifies	the	conditions	in	the	device	and	the	channel	and	any	errors	that	occurred	during	the	transfer.	The	difference	between	the	start	I/O	and	start	I/O	fast	release	instructions	is	that	the	latter	requires	less	CPU	time	for	its	execution.	When	the	channel	receives	one	of	these	two	instructions,	it	refers	to	memory	location	72	force	address	of	the	first
channel	command	word	(CCW).	The	format	of	the	channel	command	word	is	shown	in	Fig.	6.41(c).	The	data	address	field	specifies	first	address	of	a	memory	buffer	and	the	count	field	gives	the	number	of	involved	in	the	transfer.	The	command	field	specifies	an	I/O	operation	flag	bits	provide	additional	information	for	the	channel.	The	command	and



corresponds	to	an	operation	code	that	specifies	one	of	six	basic	types	of	O	operations:	1.	Write.	Transfer	data	from	memory	to	10	device.	2.	Read.	Transfer	data	from	I/O	device	to	memory.	3.	Read	backwards.	Read	magnetic	tape	with	tape	moving	backward	4.	Control.	Used	to	initiate	an	operation	not	involving	transfer	of	data,	such	as	rewinding	of
tape	or	positioning	a	disk-access	mechanism.	5.	Sense.	Informs	the	channel	to	transfer	its	channel	status	were	memory	location	64.	116.	Paper	Name:	Computer	Organization	and	Architecture	6.	Transfer	in	channel.	Used	instead	of	a	jump	instruction.	Here	a	word	in	missing	address	field	specifies	the	address	of	the	next	command	word	to	be	executed
by	the	channel.	Figure	6.41:	IBM	370	I/O	related	word	formats.	An	example	of	a	channel	program	is	shown	in	Table	6.7.	It	consists	of	three	command	words.	The	first	causes	a	byte	transfer	into	a	magnetic	tape	from	memory	starting	at	address	4000.	The	next	two	command-words	perform	a	similar	function	with	a	different	portion	of	memory	and	byte
count.	The	six	flags	in	each	control	word	specify	certain	interrelations	between	count.	The	first	flag	is	set	to	1	in	the	first	command	word	to	specify	"data	chaining."	It	results	in	combining	the	60	bytes	from	the	first	command	word	with	the	word	with	the	20	bytes	of	its	successor	into	one	record	of	80	bytes.	The	80	bytes	are	written	on	tape	without	any
separation	or	gaps	ever	though	two	memory	sections	were	used.	The	second	flag	is	set	to	1	in	the	second	command	word	to	specify	"command	chaining."	It	informs	the	channel	that	the	next	command	word	will	use	the	same	I/O	device,	in	this	case,	the	tape,	the	channel	informs	the	tape	unit	to	start	inserting	a	record	gap	on	the	tape	and	proceeds	to
read	the	next	command	word	from	memory.	The	40	bytes	at	the	third	command	word	are	then	written	on	tape	as	a	separate	record.	When	all	the	flags	are	equal	to	zero,	it	signifies	the	end	of	I/O	operations	for	the	particular	I/O	device.	Table	6.7:	BM-370	Channel	Program	Example	A	memory	map	showing	all	pertinent	information	for	I/O	processing	is
illustrated	in	Fig	6.42.	The	operation	begins	when	the	CPU	program	encounters	a	start	I/O	instruction.	The	IOP	then	goes	to	memory	location	72	to	obtain	a	channel	address	word.	This	word	117.	Paper	Name:	Computer	Organization	and	Architecture	contains	the	starting	address	of	the	I/O	channel	program.	The	channel	then	proceeds	to	execute	the
program	specified	by	the	channel	command	words.	The	channel	constructs	a	status	word	during	the	transfer	and	stores	it	in	location	64.	Upon	interruption,	the	CPU	can	refer	the	memory	location	64	for	the	status	word.	Figure	6.42:	Location	of	Information	in	Memory	for	I/O	Operation	in	the	IBM	70	6.4.2	Serial	Communication	Now	we	see	the	serial
communication.	A	data	communication	processor	is	an	I/O	processor	that	distributes	and	collects	data	from	many	remote	terminals	connected	through	telephone	and	other	communication	lines.	It	is	a	specialized	I/O	processor	118.	Paper	Name:	Computer	Organization	and	Architecture	designed	to	communicate	directly	with	data	communication
networks.	A	communication	network	may	consist	of	any	of	a	wide	variety	of	devices,	such	as	printers,	interactive	display	devices,	digital	sensors,	or	a	remote	computing	facility.	With	the	use	of	a	data	communication	processor,	the	computer	can	service	fragments	of	each	network	demand	in	an	interspersed	manner	and	thus	have	the	apparent	behavior
of	serving	many	users	at	once.	In	this	way	the	computer	is	able	to	operate	efficiently	in	a	time-sharing	environment.	The	main	difference	between	an	I/O	processor	and	a	data	communication	processor	is	in	the	way	the	processor	communicates	with	the	I/O	devices.	An	I/O	processor	communicates	with	the	peripherals	through	a	common	I/O	bus	that	is
comprised	of	many	data	and	control	lines.	All	peripherals	share	the	common	bus	and	use	it	to	transfer	information	to	and	from	the	I/O	processor.	A	data	communication	processor	communicates	with	each	terminal	through	a	single	pair	of	wires.	Both	data	and	control	information	are	transferred	in	a	serial	fashion	with	the	result	that	the	transfer	rate	is
much	slower.	The	task	of	the	data	communication	processor	is	to	transmit	and	collect	digital	information	to	and	from	each	terminal,	determine	if	the	information	is	data	or	control	and	respond	to	all	requests	according	to	predetermined	established	procedures.	The	processor,	obviously,	must	also	communicate,	with	the	CPU	and	memory	in	the	same
manner	as	any	I/O	processor.	The	way	that	remote	terminals	are	connected	to	a	data	communication	processor	is	via	telephone	lines	or	other	public	or	private	communication	facilities.	Since	telephone	lines	were	originally	designed	for	voice	communication	and	computers	communicate	in	terms	of	digital	signals,	some	form	of	conversion	must	be	used.
The	converters	are	called	data	sets,	acoustic	couplers	or	modems	(from	"modulator-demodulator").	A	modem	converts	digital	signals	into	audio	tones	to	be	transmitted	over	telephone	lines	and	also	converts	audio	tones	from	the	line	to	digital	signals	for	machine	use.	Synchronous	transmission	does	not	use	start-stop	bits	to	frame	characters	and
therefore	makes	more	efficient	use	of	the	communication	link.	High-speed	devices	use	synchronous	transmission	to	realize	this	efficiency.	The	modems	used	in	synchronous	transmission	have	internal	clocks	that	are	set	to	the	frequency	that	bits	are	being	transmitted	in	the	communication	line.	For	proper	operation,	it	is	required	that	the	clocks	in	the
transmitter	and	receiver	modems	remain	synchronized	at	all	times.	The	communication	line,	however,	contains	only	the	data	bits	from	which	the	clock	information	must	be	extracted.	Frequency	synchronization	is	achieved	by	the	receiving	modem	from	the	signal	transitions	that	occur	in	the	received	data.	Any	frequency	shift	that	may	occur	between
the	transmitter	and	receiver	clocks	is	continuously	adjusted	by	maintaining	the	receiver	clock	'at	the	frequency	of	the	incoming	bit	stream.	The	modem	transfers	the	received	data	together	with	the	clock	to	the	interface	unit.	Contrary	to	asynchronous	transmission,	where	each	character	can	be	sent	separately	with	its	own	start	and	stop	bits,
synchronous	transmission	must	send	a	continuous	119.	Paper	Name:	Computer	Organization	and	Architecture	message	in	order	to	maintain	synchronism.	The	message	consists	of	a	group	of	bits	transmitted	sequentially	as	a	block	of	data.	The	entire	block	is	transmitted	with	special	control	characters	at	the	beginning	and	end	of	the	block.	The	control
characters	at	the	beginning	of	the	block	supply	the	information	needed	to	separate	the	incoming	bits	into	individual	characters.	In	synchronous	transmission,	where	an	entire	block	of	characters	is	transmitted,	each	character	has	a	parity	bit	for	the	receiver	to	check.	After	the	entire	block	is	sent,	the	transmitter	sends	one	more	character	as	a	parity
over	the	length	of	the	message.	This	character	is	called	a	longitudinal	redundancy	check	(LRC)	and	is	the	accumulation	of	the	exclusive-OR	of	all	transmitted	characters.	The	receiving	station	calculates	the	LRC	as	it	receives	characters	and	compares	it	with	the	transmitted	LRC.	The	calculated	and	received	LRC	should	be	equal	for	error-free
messages.	If	the	receiver	finds	an	error	in	the	transmitted	block,	it	informs	the	sender	to	retransmit	the	same	block	once	again.	Another	method	used	for	checking	errors	in	transmission	is	the	cyclic	redundancy	check	(CRC).	This	is	a	polynomial	code	obtained	from	the	message	bits	by	passing	them	through	a	feedback	shift	register	containing	a
number	of	exclusive-OR	gates.	This	type	of	code	is	suitable	for	detecting	burst	errors	occurring	in	the	communication	channel.	Data	can	be	transmitted	between	two	points	in	three	different	modes	-	simplex,	half-	duplex,	and	full-duplex.	A	simplex	line	carries	information	in	one	direction	only.	This	mode	is	seldom	used	in	data	communication	because
the	receiver	cannot	communicate	with	the	transmitter	to	indicate	the	occurrence	of	errors.	Examples	of	simplex	transmission	are	radio	and	television	broadcasting.	A	half-duplex	transmission	system	is	one	that	is	capable	of	transmitting	in	both	directions	but	data	can	be	transmitted	in	only	one	direction	at	a	time.	A	pair	of	wires	is	needed	for	this
mode.	A	full-duplex	transmission	can	send	and	receive	data	in	both	directions	simultaneously.	This	can	be	achieved	by	means	of	a	four-wire	link,	with	a	different	pair	of	wires	dedicated	to	each	direction	of	transmission.	The	communication	lines,	modems,	and	other	equipment	used	in	the	transmission	of	information	between	two	or	more	stations	is
called	a	data	link.	The	orderly	transfer	of	information	in	a	data	link	is	accomplished	by	means	of	a	protocol.	A	data	link	control	protocol	is	a	set	of	rules	that	are	followed	by	interconnecting	computers	and	terminals	to	ensure	the	orderly	transfer	of	information.	The	purpose	of	a	data	link	protocol	is	to	establish	and	terminate	a	connection	between	two
stations,	to	identify	the	sender	and	receiver,	to	ensure	that	all	messages	are	passed	correctly	without	errors,	and	to	handle	all	control	functions	involved	in	a	sequence	of	data	transfers.	Protocols	are	divided	into	two	major	categories	according	to	the	message-framing,	technique	used.	These	are	character-oriented	protocol	and	bit-oriented	protocol.
6.4.3	Character-Oriented	Protocol	120.	Paper	Name:	Computer	Organization	and	Architecture	The	character-oriented	protocol	is	based	on	a	character	set.	The	code	most	commonly	used	is	ASCII	(American	Standard	Code	for	Information	Interchange).	It	is	a	7-bit	code	with	an	eighth	bit	used	for	parity.	The	code	has	128	characters,	of	which	95	are
graphic	characters	and	33	are	control	characters.	The	graphic	characters	include	the	upper-	and	lowercase	letters,	the	ten	numerals,	and	a	variety	of	special	symbols.	A	list	of	the	ASCII	characters	can	be	found	in	Table	6.8.	The	control	characters	are	used	for	the	purpose	of	routing	data,	arranging	the	test	in	a	desired	format,	and	for	the	layout	of	the
printed	page.	The	characters	that	control	the	transmission	are	called	communication	control	characters.	These	characters	are	listed	in	Table	6.8.	Each	character	has	a	7-bit	code	and	is	referred	to	by	a	three-letter	symbol.	The	role	of	each	character	in	the	control	of	data	transmission	is	stated	briefly	in	the	function	column	of	the	table.	The	SYN
character	serves	as	synchronizing	agent	between	the	transmitter	and	receiver.	When	the	7-bit	ASCII	code	is	used	with	an	odd-parity	bit	in	the	most	significant	position,	the	assigned	SYN	character	has	the	8-bit	code	00010110	which	has	the	property	that,	upon	circular	shifting,	it	repeats	itself	only	after	a	full	8-bit	cycle.	When	the	transmitter	starts
sending	8-bit	characters,	it	sends	a	few	characters	first	and	then	sends	the	actual	message.	The	initial	continuous	string	of	bits	accepted	by	the	receiver	is	checked	for	a	SYN	character.	In	other	words,	with	each	clock	pulse,	the	receiver	checks	the	last	eight	bits	received.	If	they	do	not	match	the	bits	of	the	SYN	character,	the	receiver	accepts	the	next
bit,	rejects	the	previous	high-order	bit,	and	again	checks	the	last	eight	bits	received	for	a	SYN	character.	This	is	repeated	after	each	clock	pulse	and	bit	received	until	a	SYN	character	is	recognized.	Once	a	SYN	character	is	detected,	the	receiver	has	framed	a	character.	From	here	on	the	receiver	counts	every	eight	bits	and	accepts	them	as	a	single
character.	Usually,	the	receiver	checks	two	consecutive	SYN	characters	to	remove	any	doubt	that	the	first	did	not	occur	as	a	result	of	a	noise	signal	on	the	line.	Moreover,	when	the	transmitter	is	idle	and	does	not	have	any	message	characters	to	send,	it	sends	a	continuous	string	of	SYN	characters.	The	receiver	recognizes	these	characters	as	a
condition	for	synchronizing	the	line	and	goes	into	a	synchronous	idle	state.	In	this	state,	the	two	units	maintain	bit	and	character	synchronism	even	though	no	meaningful	information	is	communicated.	Table	6.8:	ASCII	Communication	Control	Characters	We	transmit	messages	through	the	data	link	with	an	established	format	consisting	of	a	header
field,	a	text	field,	and	an	error-checking	field.	A	typical	message	format	for	a	character-oriented	protocol	is	shown	in	Fig.	6.43.	The	two	SYN	characters	assure	121.	Paper	Name:	Computer	Organization	and	Architecture	proper	synchronization	at	the	start	of	the	message.	Following	the	SYN	characters	is	the	header,	which	starts	with	an	SOH	(start	of
heading)	character.	The	header	consists	of	address	and	control	information.	The	STX	character	terminates	the	header	and	signifies	the	beginning	of	the	text	transmission.	The	text	portion	of	the	message	is	variable	in	length	and	may	contain	any	ASCII	characters	except	the	communication	control	characters.	The	text	field	is	terminated	with	the	ETX
character.	The	last	field	is	a	block	check	character	(BCC)	used	for	error	checking.	It	is	usually	either	a	longitudinal	redundancy	check	(LRC)	or	a	cyclic	redundancy	check	(CRC).	The	receiver	accepts	the	message	and	calculates	its	own	BCC.	If	the	BCC	transmitted	does	not	agree	with	the	BCC	calculated	by	the	receiver,	the	receiver	responds	with	a
negative	acknowledge	(NAK)	character.	The	message	is	then	retransmitted	and	checked	again.	Retransmission	will	be	typically	attempted	several	times	before	it	is	assumed	that	the	line	is	faulty.	When	the	transmitted	BCC	matches	the	one	calculated	by	the	receiver,	the	response	is	a	positive	acknowledgment	using	the	ACK	character.	Transmission
Example	Let	us	illustrate	by	a	specific	example	the	method	by	which	a	terminal	and	the	processor	communicate.	The	communication	with	the	memory	unit	and	CPU	is	similar	to	any	I/O	processor.	Figure	6.43:	Typical	message	format	for	character-oriented	protocol	A	typical	message	that	might	be	sent	from	a	terminal	to	the	processor	is	listed	in	Table
6.9.	A	look	at	this	message	reveals	that	there	are	a	number	of	control	characters	used	for	message	formation.	Each	character,	including	the	control	characters,	is	transmitted	serially	as	an	8-bit	binary	code	which	consist	of	the	7-bit	ASCII	code	plus	an	odd	parity	bit	in	the	eighth	most	significant	position.	The	two	SYN	characters	are	used	to
synchronize	the	receiver	am	transmitter.	The	heading	starts	with	the	SOH	character	and	continues	with	two	characters	that	specify	the	address	of	the	terminal.	In	this	particular	example	the	address	is	T4,	but	in	general	it	can	have	any	set	of	two	or	more	graphic	characters.	The	STX	character	terminates	the	heading	and	signifies	the	beginning	of	the
text	transmission.	The	text	data	of	concern	here	is	"request	balance	of	account	number	1234."	The	individual	characters	for	this	message	are	not	listed	in	the	table	because	they	will	take	too	much	space.	It	must	be	realized	however,	that	each	character	in	the	message	has	an	8-bit	code	and	that	each	bit	is	transmitted	serially.	The	ETX	control
character	signifies	the	termination	of	the	text	characters.	The	next	character	following	ETX	is	a	longitudinal	redundancy	check	(LRC).	Each	bit	in	this	character	is	a	parity	bit	calculated	from	all	the	bits	in	the	same	column	in	the	code	section	of	the	table.	122.	Paper	Name:	Computer	Organization	and	Architecture	The	data	communication	processor
receives	this	message	and	proceeds	to	analyze	it.	It	recognizes	terminal	T4	and	stores	the	text	associated	with	the	message.	While	receiving	the	characters,	the	processor	checks	the	parity	of	each	character	and	also	computes	the	longitudinal	parity.	The	computed	LRC	is	compared	with	the	LRC	character	received.	If	the	two	match,	a	positive
acknowledgement	(ACK)	a	sent	back	to	the	terminal.	If	a	mismatch	exists,	a	negative	acknowledgment	(NAK)	is	returned	to	the	terminal,	which	would	initiate	a	retransmission	of	the	same	block.	If	the	processor	finds	the	message	without	errors,	it	transfers	the	message	into	memory	and	interrupts	the	CPU.	When	the	CPU	acknowledges	the	interrupt,
it	analyzes	the	message	and	prepares	a	text	message	for	responding	to	the	request.	The	CPU	sends	an	instruction	to	the	data	communication	processor	to	send	the	message	to	the	terminal.	Table	6.9:	Typical	Transmission	from	a	Terminal	to	Processor	A	typical	response	from	processor	to	terminal	is	listed	in	Table	6.9.	After	two	SYN	characters,	the
processor	acknowledges	the	previous	message	with	an	ACK	character.	The	line	continues	to	idle	with	SYN	character	waiting	for	the	response	to	come.	The	message	received	from	the	CPU	is	arranged	in	the	proper	format	by	the	processor	by	inserting	the	required	control	characters	before	and	after	the	text.	The	message	has	the	heading	SOH	and	the
address	of	the	terminal	T4.	The	text	message	informs	the	terminal	that	the	balance	is	$100.	An	LRC	character	is	computed	and	sent	to	the	terminal.	If	the	terminal	responds	with	a	NAK	character,	the	processor	retransmits	the	message.	Table	6.10:	Typical	Transmission	from	Processor	to	Terminal	123.	Paper	Name:	Computer	Organization	and
Architecture	6.4.4	Bit-Oriented	Protocol	This	protocol	does	not	use	characters	in	its	control	field	and	is	independent	of	any	particular	code.	It	allows	the	transmission	of	serial	bit	stream	of	any	length	without	the	implication	of	character	boundaries.	Messages	are	organized	in	a	specific	format	called	a	frame.	In	addition	to	the	information	field,	a	frame
contains	address,	control,	and	error-checking	fields	The	frame	boundaries	are	determined	from	a	special	8-bit	number	called	a	flag	Examples	of	bit-oriented	protocols	are	SDLC	(synchronous	data	link	control)	used	by	IBM,	HDLC	(high-level	data	link	control)	adopted	by	the	International	Standards	Organization,	and	ADCCP	(advanced	data
communication	control	procedure)	adopted	by	the	American	National	Standards	Institute.	Any	data	communication	link	involves	at	least	two	participating	stations	The	station	that	has	responsibility	for	the	data	link	and	issues	the	commands	to	control	the	link	is	called	the	primary	station.	The	other	station	is	a	secondary	station.	Bit-oriented	protocols
assume	the	presence	of	one	primary	station	and	one	or	more	secondary	stations.	All	communication	on	the	data	link	is	from	the	primary	station	to	one	or	more	secondary	stations,	or	from	a	secondary	station	to	the	primary	station.	The	frame	format	for	the	bit-oriented	protocol	is	shown	in	Fig.	6.44.	A	frame	starts	with-the	8-bit	flag	01111110	followed
by	an	address	and	control	sequence.	The	information	field	is	not	restricted	in	format	or	content	and	can	be	of	any	length.	The	frame	check	field	is	a	CRC	(cyclic	redundancy	check	sequence	used	for	detecting	errors	in	transmission.	The	ending	flag	indicate;	to	the	receiving	station	that	the	16	bits	just	received	constitute	the	CRC	bits	The	ending	frame
can	be	followed	by	another	frame,	another	flag,	or	a	sequence	of	consecutive	Vs.	When	two	frames	follow	each	other,	the	intervening	flag	is	simultaneously	the	ending	flag	of	the	first	frame	and	the	beginning	flag	of	the	next	frame.	If	no	information	is	exchanged,	the	transmitter	sends	a	series	of	124.	Paper	Name:	Computer	Organization	and
Architecture	flags	to	keep	the	line	in	the	active	state.	The	line	is	said	to	be	in	the	idle	state	with	the	occurrence	of	15	or	more	consecutive	l's.	Frames	with	certain	control	messages	are	sent	without	an	information	field.	A	frame	must	have	a	minimum	of	32	bits	between	two	flags	to	accommodate	the	address,	control,	and	frame	check	fields.	The
maximum	length	depends	on	the	condition	of	the	communication	channel	and	its	ability	to	transmit	long	messages	error-free.	To	prevent	a	flag	from	occurring	in	the	middle	of	a	frame,	the	bit-oriented	protocol	uses	a	method	called	zero	insertion.	It	requires	a	0	be	inserted	by	the	transmitting	station	after	any	succession	of	five	continuous	l's.	The
receiver	always	removes	a	0	that	follows	a	succession	of	five	l's.	Thus	the	bit	pattern	0111111	is	transmitted	as	01111101	and	restored	by	the	receiver	to	it	original	value	by	removal	of	the	0	following	the	five	l's.	As	a	consequence,	no	pattern	of	01111110	is	ever	transmitted	between	the	beginning	and	ending	flags.	Figure	6.44:	Frame	Format	for	Bit-
oriented	Protocol	Following	the	flag	is	the	address	field,	which	is	used	by	the	primary	station	to	designate	the	secondary	station	address.	An	address	field	of	eight	bits	can	specify	up	to	256	addresses.	Some	bit-oriented	protocols	permit	the	use	of	an	extended	address	field.	To	do	this,	the	least	significant	bit	of	an	address	byte	is	set	too	if	another
address	byte	follows.	A	1	in	the	least	significant	bit	of	a	byte	is	use	to	recognize	the	last	address	byte.	Following	the	address	field	is	the	control	field.	The	control	field	comes	in	three	different	formats,	as	shown	in	Fig.	6.45.	The	information	transfer	format	is	used	for	ordinary	data	transmission.	Each	frame	transmitted	in	this	format	contains	send	and
receive	counts.	A	station	that	transmits	sequence	frames	counts	and	numbers	each	frame.	This	count	is	given	by	the	send	count	Ns.	A	station	receiving	sequenced	frames	counts	each	error-free	frame	that	receives.	This	count	is	given	by	the	receive	count	Nr.	The	Nr	count	advance	when	a	frame	is	checked	and	found	to	be	without	errors.	The	receiver
confirms	accepted	numbered	information	frames	by	returning	its	Nr	count	to	the	transmitting	station.	125.	Paper	Name:	Computer	Organization	and	Architecture	Figure	6.45:	Control	Field	Format	in	Bit-oriented	Protocol	The	P/F	bit	is	used	by	the	primary	station	to	poll	a	secondary	station	to	request	that	it	'initiate	transmission.	It	is	used	by	the
secondary	station	to	indicate	the	final	transmitted	frame.	Thus	the	P/F	field	is	called	P	(poll)	when	the	primary	station	is	transmitting	but	is	designated	as	F	(final)	when	a	secondary	station	is	transmitting.	Each	frame	sent	to	the	secondary	station	from	the	primary	station	has	a	P	bit	set	to	0.	When	the	primary	station	is	finished	and	ready	for	the
secondary	station	to	respond,	the	P	bit	is	set	to	1.	The	secondary	station	then	responds	with	a	number	of	frames	in	which	the	F	bit	is	set	to	0.	When	the	secondary	station	sends	the	last	frame,	it	sets	the	F	bit	to	1.	Therefore,	the	P/F	bit	is	used	to	determine	when	data	transmission	from	a	station	is	finished.	The	supervisory	format	of	the	control	field	is
recognized	from	the	first	two	bits	being	1	and	0.	The	next	two	bits	indicate	the	type	of	command.	The	frames	of	the	supervisory	format	do	not	carry	an	information	field.	They	are	used	to	assist	in	the	transfer	of	information	in	that	they	confirm	the	acceptance	of	preceding	frames	carrying	information,	convey	ready	or	busy	conditions,	and	report	frame
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Set-	associative	Mapping	7.4.4	Virtual	memory	7.4.5	Associative	memory	Page	table	7.4.6	Page	Replacement	Introduction	Memory	in	a	computer	system	can	be	divided	into	two	main	classes:	main	store	and	secondary	store.	Main	store	is	the	high	speed	memory	used	to	hold	the	programs	and	data	currently	in	use.	Secondary	store	is	the	memory	used
for	long	term	storage	of	data,	e.g.	a	disk	drive.	This	section	discusses	main	store	-	the	next	deals	with	secondary	store.	Computer	memory	is	made	of	a	number	of	cells	(one	per	bit),	each	of	which	can	exist	in	two	distinct	states	corresponding	to	the	value	of	some	physical	property.	Cells	are	often	grouped	together	to	form	words.	Each	cell	has	an
address	which	allows	it	to	be	uniquely	specified.	Different	physical	properties	can	be	used	to	store	the	information.	The	following	are	commonly	used	methods.	Electrical	with	feedback	(e.g.	flip-flops)	Electrical	with	stored	charge	(based	on	capacitance)	Magnetic	(e.g.	disk	drives)	Structural	(e.g.	compact	disks).	Computer	memory	can	also	be	classed
according	to	the	method	of	access	to	the	cells.	Random	access	memory	is	arranged	so	that	the	time	taken	to	read	or	write	any	cell	is	the	same,	regardless	of	its	location.	Main	memory	is	random-access.	Note	however,	that	127.	Paper	Name:	Computer	Organization	and	Architecture	the	term	random	access	memory	(RAM)	is	often	used	to	refer	only	to
the	read-writable	main	memory	used	for	short	term	data	storage.	Serial	access	memory	is	arranged	so	that	the	time	taken	to	access	a	particular	cell	is	dependent	is	dependent	on	the	physical	location	of	the	cell,	and	usually	depends	on	the	position	of	the	last	cell	accessed.	Tape	drives	are	serial	access	devices.	We	can	also	classify	memory	according
to	whether	or	not	we	can	modify	the	cell	contents.	Read	only	memory	(ROM)	is	memory	whose	contents	cannot	be	modified.	This	may	either	be	semiconductor	memory,	or	a	read-only	device	such	as	an	ordinary	optical	disk	(CD-ROM).	The	core	of	a	computer's	operating	system	is	often	stored	in	semiconductor	ROM.	7.1	Memory	Hierarchy	Memory
Hierarchy	is	to	obtain	the	highest	possible	access	speed	while	minimizing	the	total	cost	of	the	memory	system	Computer	systems	always	combine	several	different	types	of	the	memory	devices	discussed	above.	This	is	because	none	alone	can	provide	all	the	required	characteristics.	Ideally	computer	memory	should	be	the	following.	a)	Very	fast	b)	small
c)	Consume	low	power	d)	Robust	and	non-volatile	(remember	its	contents	even	when	switched	off)	e)	Cheap	Magnetic	tapes	Magnetic	disk	I/O	processor	CPU	Main	memory	Cache	memory	Auxiliary	memory	Register	Cache	128.	Paper	Name:	Computer	Organization	and	Architecture	Unfortunately	these	aims	conflict,	and	different	types	of	memory
device	offer	different	benefits	and	drawbacks.	Internal	CPU	memory	This	is	very	fast.	However,	it	is	bulky,	expensive,	consumes	a	lot	of	power,	and	the	contents	are	lost	when	power	is	removed.	Main	store	Relatively	fast,	but	still	bulky,	expensive	and	volatile.	Magnetic	disk	These	can	store	large	quantites	of	data	cheaply	and	in	a	small	space.
Furthermore,	these	can	be	used	for	permament/semi-permanent	storage,	as	the	data	is	not	lost	when	power	is	removed.	However,	the	access	time	is	much	slower	than	main	memory.	Magnetic	tape	and	optical	storage	These	are	both	very	cheap	and	can	store	huge	quantities	of	data	in	a	small	space.	Typically	they	use	removable	media,	and	so	are	ideal
for	permanent	storage	of	data.	However,	access	times	are	extremely	long.	By	combining	different	types	of	memory	in	a	single	system,	the	designer	can	get	the	best	of	all	worlds	and	build	a	relatively	low	cost	system	with	a	high	capacity	and	a	speed	almost	that	of	a	huge	main	memory.	Semiconductor	(main)	Memory	All	of	the	memory	used	as	main
store	in	a	modern	computer	is	implemented	as	semiconductors	fabricated	on	wafers	of	silicon.	Semiconductor	memory	is	fast	and	easy	to	use.	To	fulfill	the	needs	of	modern	computer	systems	it	is	becoming	increasingly	dense	(more	bits	per	chip)	and	cheap.	A	semiconductor	memory	chip	consists	of	a	large	number	of	cells	organised	into	an	array,	and
the	logic	necessary	to	access	any	array	in	the	cell	easily.	Semi-conductor	memory	may	be	classed	according	to	the	mechanism	used	by	each	cell	to	store	data.	The	simplest	type	of	memory	is	called	static	memory.	In	static	memory	each	cell	uses	a	flip-flop	made	from	four	or	six	transistors.	The	data	in	each	cell	is	remembered	until	the	Main	Memory
Magnetic	Disk	129.	Paper	Name:	Computer	Organization	and	Architecture	power	is	switched	off.	Static	memory	is	easy	to	use	and	reliable,	but	is	relatively	bulky,	slow	and	expensive.	Most	computer	systems	therefore	use	dynamic	memory	as	their	main	store.	Dynamic	memory	uses	just	a	single	transistor	per	cell,	and	is	therefore	denser,	faster	and
cheaper.	Unfortunately	each	cell	gradually	forgets	the	data	stored	in	it,	and	so	extra	circuitry	must	be	used	to	continually	refresh	the	cells.	Memory	Organisation	This	section	looks	at	how	the	various	components	of	a	computer's	main	memory	are	arranged.	An	n-bit	address	bus	allows	us	to	uniquely	refer	to	up	to	2n	different	memory	locations.	Often
these	memory	locations	are	imagined	laid	out	in	a	column,	known	as	the	address	space.	Various	regions	of	the	address	space	are	then	grouped	into	blocks	to	form	a	memory	map.	The	blocks	may	refer	to	hardware	(i.e.	physical	RAM	and	ROM	devices),	or	to	logical	entities	(i.e.	programs,	data,	etc.).	Address	Decoding	The	need	for	memory	address
decoding	arises	from	the	fact	that	the	main	memory	of	a	computer	system	is	not	contructed	from	a	single	component	which	uniquely	addresses	each	possible	memory	location.	Imagine	a	situation	where	two	1M	memory	chips	are	connected	to	a	32-bit	address	bus	to	make	2M	of	memory	available.	Each	memory	chip	will	need	twenty	address	lines	to
uniquely	identify	each	location	in	it.	If	the	address	lines	of	each	memory	chip	were	simply	connected	to	the	first	twenty	CPU	address	lines,	then	both	memory	chips	would	be	accessed	simultaneously	whenever	the	CPU	referred	to	any	address.	We	must	find	a	strategy	that	allows	us	to	individually	address	each	memory	chip.	As	each	memory	chip	will
have	an	enable	input,	this	can	rely	on	selectively	enabling	the	one	which	we	want	to	access.	a)	Partial	Address	Decoding	This	is	the	simplest	and	least	expensive	form	of	address	decoding.	In	the	above	example,	we	could	connect	the	chip	select	input	of	one	memory	chip	to	the	last	CPU	address	line,	and	the	chip	select	input	of	the	other	to	the	same
address	line	but	via	an	inverter.	In	this	way	the	two	chips	would	never	be	accessed	simultaneously.	However,	this	is	a	very	inefficient	scheme.	Eleven	of	the	address	lines	are	not	used,	and	one	of	the	two	memory	chips	is	always	selected.	The	usable	address	space	of	the	computer	has	been	reduced	from	4G	to	2K.	Partial	address	decoding	is	used	in
small	dedicated	systems	where	low	cost	is	the	most	important	factor.	The	penalty	paid	is	that	not	all	the	address	space	can	be	used,	and	future	expansion	will	be	difficult.	Full	Address	Decoding	A	computer	system	is	said	to	have	full	address	decoding	when	each	addressable	location	within	a	memory	component	corresponds	to	a	single	address	on	the
CPU's	130.	Paper	Name:	Computer	Organization	and	Architecture	address	bus.	That	is,	every	address	line	is	used	to	specify	each	physical	memory	location,	through	a	combination	of	specifying	a	device	and	a	location	within	it.	Full	address	decoding	makes	the	most	efficient	use	of	the	available	address	space,	but	is	often	impracticable	to	use	because
of	the	excessive	hardware	needed	to	implement	it.	This	is	particularly	true	where	devices	with	a	small	number	of	addressable	locations	(for	example	memory-mapped	I/O	devices)	are	used.	b)	Block	Address	Decoding	Block	address	decoding	is	a	compromise	between	partial	address	decoding	and	full	address	decoding.	The	memory	space	is	divided	into
a	number	of	blocks.	For	example,	in	a	system	with	a	32-bit	address	bus,	the	memory	space	could	be	divided	into	4096	blocks	of	1M.	This	could	be	implemented	using	simple	decoding	devices.	Many	real	systems	employ	a	combination	of	the	above	decoding	techniques.	For	example,	several	small	devices	may	reside	in	the	same	block	by	using	partial
address	decoding	within	that	block.	Cache	Memory	Although	semiconductor	memory	is	fast,	typically	it	takes	longer	for	the	CPU	to	access	main	memory	than	to	execute	simple	instructions.	We	can	get	around	this	problem	by	taking	advantage	of	locality	of	reference.	Typically	when	executing	a	program,	memory	accesses	over	a	short	interval	tend	to
be	to	similar	memory	locations.	Most	modern	computer	systems	therefore	use	a	small	amount	of	very	fast	memory	between	the	CPU	and	main	memory,	known	as	cache	memory.	Whenever	the	CPU	needs	to	access	main	memory,	the	cache	is	first	checked	to	see	if	the	data	is	stored	there.	If	it	is,	then	main	memory	need	not	be	accessed.	If	it	is	not,	then
it	is	fetched	from	main	memory	and	placed	in	the	cache,	together	with	the	data	nearby,	in	the	hope	that	this	will	also	be	needed	soon.	In	this	way,	accesses	to	main	memory	can	be	greatly	reduced	(typically	reduced	to	less	than	10%).	We	have	already	seen	that	CPU	memory	is	faster	than	main	memory,	but	is	very	expensive,	and	takes	up	a	lot	of	room
on	a	chip	which	is	already	likely	to	be	fairly	densely	packed.	Many	systems	therefore	use	a	two-stage	cache	design,	using	a	small	amount	of	on-chip	cache	memory,	and	a	larger	external	cache.	7.2	Main	Memory	•	A	memory	unit	is	a	collection	of	storage	cells	together	with	associated	circuits	to	transfer	information	in	and	out	of	storage	•	The	memory
stores	binary	data	in	groups	of	bits	called	words	•	A	word	can	represent	an	instruction	code	or	alphanumeric	characters	•	Each	word	in	memory	is	assigned	an	address	from	0	to	2k	–1,	where	k	is	the	number	of	address	lines	•	A	decoder	inside	the	memory	accepts	an	address	opens	the	paths	needed	to	select	the	bits	of	the	specified	word	131.	Paper
Name:	Computer	Organization	and	Architecture	•	The	memory	capacity	is	stated	as	the	total	number	of	bytes	that	can	be	stored	•	Refer	to	the	number	of	bytes	using	one	of	the	following	o	K	(kilo)	=	210	o	M	(mega)	=	220	o	G	(giga)	=	230	•	64K	=	210,	2M	=	221,	and	4G	=	232	•	In	random-access	memory	(RAM)	the	memory	cells	can	be	accessed	for
information	from	any	desired	random	location	•	The	process	of	locating	a	word	in	memory	is	the	same	and	requires	an	equal	amount	of	time	no	matter	where	the	cells	are	located	physically	in	memory	•	Communication	between	memory	and	its	environment	is	achieved	via	data	input	and	output	lines,	address	selections	lines,	and	control	lines	•	The	n
data	input	lines	provide	the	information	to	be	stored	in	memory	•	The	n	data	output	lines	supply	the	information	coming	out	of	memory	•	The	k	address	lines	provide	a	binary	number	of	k	bits	that	specify	a	specific	word	or	location	•	The	two	control	lines	specify	the	direction	of	transfer	–	either	read	or	write	•	Steps	to	write	to	memory:	o	Apply	the
binary	address	of	the	desired	word	into	the	address	lines	o	Apply	the	data	bits	that	are	to	be	stored	in	memory	on	the	data	lines	o	Activate	the	write	input	•	Steps	to	read	from	memory:	o	Apply	the	binary	address	of	the	desired	word	into	the	address	lines	o	Activate	the	read	input	•	A	read-only	memory	(ROM)	is	a	memory	unit	that	performs	the	read
operation	only	–	there	is	no	write	capability	132.	Paper	Name:	Computer	Organization	and	Architecture	•	The	binary	information	stored	in	a	ROM	is	permanent	during	the	hardware	production	•	RAM	is	a	general-purpose	device	whose	contents	can	be	altered	•	The	information	in	ROM	forms	the	required	interconnection	pattern	•	ROMs	come	with
special	internal	electronic	fuses	that	can	be	programmed	for	a	specific	configuration	•	An	m	x	n	ROM	is	an	array	of	binary	cells	organized	into	m	words	of	n	bits	each	•	A	ROM	has	k	address	lines	to	select	one	of	m	words	in	memory	and	n	output	lines,	one	for	each	bit	of	the	word	•	May	have	one	or	more	enable	inputs	for	expansion	•	The	outputs	are	a
function	of	only	the	present	input	(the	address),	so	it	is	a	combinational	circuit	constructed	of	decoders	and	OR	gates	7.2.1	RAM	and	ROM	Chips	RAM	and	ROM	Chips	Typical	RAM	chip	Typical	ROM	chip	Chip	select	1	Chip	select	2	ReadWrite	7-bit	address	CS1	CS2	RD	WR	AD	7	128	x	8	RAM	8-bit	data	bus	CS1	CS2	RD	WR	0	0	x	x	0	1	x	x	1	0	0	0	1	0	0	1
1	0	1	x	1	1	x	x	Memory	function	Inhibit	Inhibit	Inhibit	Write	Read	Inhibit	State	of	data	bus	High-impedence	High-impedence	Input	data	to	RAM	Output	data	from	RAM	High-impedence	Chip	select	1	Chip	select	2	9-bit	address	CS1	CS2	AD	9	512	x	8	ROM	8-bit	data	bus	High-impedence	133.	Paper	Name:	Computer	Organization	and	Architecture	•
When	used	as	a	memory	unit,	it	stores	fixed	programs	that	are	not	to	be	altered	and	for	tables	of	constants	that	will	not	change	•	When	used	in	the	design	of	control	units	for	digital	computers,	it	stores	coded	information	that	represents	the	sequence	of	internal	control	variables	to	enable	the	various	operations	•	A	control	unit	that	utilizes	a	ROM	is
called	a	microprogrammed	control	unit	•	The	required	paths	may	be	programmed	in	three	different	ways	•	Mask	programming	is	done	by	the	semiconductor	company	based	upon	a	truth	table	provided	by	the	manufacturer	•	Programmable	read-only	memory	(PROM)	is	more	economical.	PROM	units	contain	all	fuses	intact	and	are	blown	by	users	•
Erasable	PROM	(EPROM)	can	be	altered	using	a	special	ultraviolet	light	Electrical	erasable	PROM	(EEPROM)	can	be	erased	with	electrical	signals	7.2.2	Memory	Address	Map	The	designer	of	a	computer	system	must	calculate	the	amount	of	memory	required	for	the	particular	application	and	assign	it	to	either	RAM	or	RAM.	The	interconnection
between	memory	and	processor	is	then	established	from	knowledge	of	the	size	of	memory	needed	and	the	type	of	RAM	and	ROM	chips	available.	The	addressing	of	memory	needed	and	the	type	of	RAM	and	ROM	chips	available.	The	addressing	of	memory	can	be	established	by	means	of	a	table	that	specfies	the	memory	assigned	to	each	chip.	The	table
called	a	memory	address	map,	is	pictorial	representation	of	assigned	address	space	for	each	chip	in	the	system.	To	demonstrate	with	particular	example,	assume	that	a	computer	system	needs	512	bytes	of	RAM	and	512	bytes	of	ROM.	The	RAM	and	ROM	chips	to	be	used	are	specified	in	fig	.The	memory	address	map	for	rhis	configuration	is	shown	in
table	12-1.	The	Compnent	coloum	specifies	whether	a	RAM	or	ROM	chip	is	used.	The	hexadecimal	sddress	coloumn	assign	a	range	of	hexadecimal	equivalent	addresses	for	each	chip.	The	address	bus	lines	are	listed	in	the	third	column.	Although	there	are	16	lines	in	the	address	bus,	the	table	shows	only	10	lines	because	the	other	are	16	lines	in	this
example	and	are	assumed	to	be	zero.	The	small	x’s	under	the	address	bus	lines	designate	those	lines	that	must	be	connected	to	the	address	lines.The	ROM	chip	has	512	bytes	and	needs	9	address	lines.	The	x’s	are	alwayes	assigned	to	the	low	arder	bus	lines:	lines	1	through	7	for	Ram	andlines	1	through	9	for	the	ROM.	Component	Hexadecimal
address	bus	address	10	9	8	7	6	5	4	3	2	1	RAM	1	0000-007F	0	0	0	X	X	X	X	X	X	X	RAM	2	0080-00FF	0	0	1	X	X	X	X	X	X	X	RAM	3	0100-017F	0	1	0	X	X	X	X	X	X	X	134.	Paper	Name:	Computer	Organization	and	Architecture	RAM	4	0180-01FF	0	1	1	X	X	X	X	X	X	X	ROM	0200-03FF	1	X	X	X	X	X	X	X	X	X	7.3	Auxiliary	Memory	The	most	common	auxiliary	memory
devices	used	in	computer	systems	are	magnetic	disks	and	tapes.	Other	components	used,	but	not	as	frequently,	are	magnetic	drums,	magnetic	bubble	memory,	and	optical	disks.	7.3.1	Magnetic	Disks	Of	the	various	types	of	Auxiliary	Storage,	the	types	used	most	often	involve	some	type	of	magnetic	disk.	These	come	in	various	sizes	and	materials,	as
we	shall	see.	This	method	uses	magnetism	to	store	the	data	on	a	magnetic	surface.	Advantages:	high	storage	capacity	reliable	gives	direct	access	to	data	A	drive	spins	the	disk	very	quickly	underneath	a	read/write	head,	which	does	what	its	name	says.	It	reads	data	from	a	disk	and	writes	data	to	a	disk.	Types	of	Magnetic	Disks	Diskette	/	Floppy	Disk
Sizes:	5¼"	3½"	Both	sizes	are	made	of	mylar	with	an	oxide	coating.	The	oxide	provides	the	magnetic	quality	for	the	disk.	The	"floppy"	part	is	what	is	inside	the	diskette	covers	-	a	very	floppy	piece	of	plastic	(i.e.	the	mylar)	Other	Removable	Media:	Several	other	kinds	of	removable	magnetic	media	are	in	use,	such	as	the	popular	Zip	disk.	All	of	these
have	a	much	higher	capacity	than	floppy	disks.	Some	kinds	of	new	computers	come	without	a	floppy	disk	drive	at	all.	135.	Paper	Name:	Computer	Organization	and	Architecture	Each	type	of	media	requires	its	own	drive.	The	drives	and	disks	are	much	more	expensive	than	floppy	drives	and	disks,	but	then,	you	are	getting	much	larger	capacities.	Hard
Disks:	These	consist	of	1	or	more	metal	platters	which	are	sealed	inside	a	case.	The	metal	is	one	which	is	magnetic.	The	hard	disk	is	usually	installed	inside	the	computer's	case,	though	there	are	removable	and	cartridgetypes,also.	Technically	the	hard	drive	is	what	controls	the	motion	of	the	hard	disks	which	contain	the	data.	But	most	people	use
"hard	disk"	and	"hard	drive"	interchangeably.	They	don't	make	that	mistake	for	floppy	disks	and	floppy	drives.	It	is	clearer	with	floppies	that	the	drive	and	the	disk	are	separate	things.	Physical	Characteristics	of	Disks:	1.	The	storage	capacity	of	a	single	disk	ranges	from	10MB	to	10GB.	A	typical	commercial	database	may	require	hundreds	of	disks.	2.
Figure	10.2	shows	a	moving-head	disk	mechanism.	o	Each	disk	platter	has	a	flat	circular	shape.	Its	two	surfaces	are	covered	with	a	magnetic	material	and	information	is	recorded	on	the	surfaces.	The	platter	of	hard	disks	are	made	from	rigid	metal	or	glass,	while	floppy	disks	are	made	from	flexible	material.	o	The	disk	surface	is	logically	divided	into
tracks,	which	are	subdivided	into	sectors.	A	sector	(varying	from	32	bytes	to	4096	bytes,	usually	512	bytes)	is	the	smallest	unit	of	information	that	can	be	read	from	or	written	to	disk.	There	are	4-32	sectors	per	track	and	20-1500	tracks	per	disk	surface.	o	The	arm	can	be	positioned	over	any	one	of	the	tracks.	o	The	platter	is	spun	at	high	speed.	o	To
read	information,	the	arm	is	positioned	over	the	correct	track.	o	When	the	data	to	be	accessed	passes	under	the	head,	the	read	or	write	operation	is	performed.	3.	A	disk	typically	contains	multiple	platters	(see	Figure	10.2).	The	read-write	heads	of	all	the	tracks	are	mounted	on	a	single	assembly	called	a	disk	arm,	and	move	together.	o	Multiple	disk
arms	are	moved	as	a	unit	by	the	actuator.	o	Each	arm	has	two	heads,	to	read	disks	above	and	below	it.	o	The	set	of	tracks	over	which	the	heads	are	located	forms	a	cylinder.	o	This	cylinder	holds	that	data	that	is	accessible	within	the	disk	latency	time.	136.	Paper	Name:	Computer	Organization	and	Architecture	o	It	is	clearly	sensible	to	store	related
data	in	the	same	or	adjacent	cylinders.	4.	Disk	platters	range	from	1.8"	to	14"	in	diameter,	and	5"1/4	and	3"1/2	disks	dominate	due	to	the	lower	cost	and	faster	seek	time	than	do	larger	disks,	yet	they	provide	high	storage	capacity.	5.	A	disk	controller	interfaces	between	the	computer	system	and	the	actual	hardware	of	the	disk	drive.	It	accepts
commands	to	r/w	a	sector,	and	initiate	actions.	Disk	controllers	also	attach	checksums	to	each	sector	to	check	read	error.	6.	Remapping	of	bad	sectors:	If	a	controller	detects	that	a	sector	is	damaged	when	the	disk	is	initially	formatted,	or	when	an	attempt	is	made	to	write	the	sector,	it	can	logically	map	the	sector	to	a	different	physical	location.	7.
SCSI	(Small	Computer	System	Interconnect)	is	commonly	used	to	connect	disks	to	PCs	and	workstations.	Mainframe	and	server	systems	usually	have	a	faster	and	more	expensive	bus	to	connect	to	the	disks.	8.	Head	crash:	why	cause	the	entire	disk	failing	(?).	9.	A	fixed	dead	disk	has	a	separate	head	for	each	track	--	very	many	heads,	very	expensive.
Multiple	disk	arms:	allow	more	than	one	track	to	be	accessed	at	a	time.	Both	were	used	in	high	performance	mainframe	systems	but	are	relatively	rare	today.	Performance	Measures	of	Disks	The	main	measures	of	the	qualities	of	a	disk	are	capacity,	access	time,	data	transfer	rate,	and	reliability,	1.	access	time:	the	time	from	when	a	read	or	write
request	is	issued	to	when	data	transfer	begins.	To	access	data	on	a	given	sector	of	a	disk,	the	arm	first	must	move	so	that	it	is	positioned	over	the	correct	track,	and	then	must	wait	for	the	sector	to	appear	under	it	as	the	disk	rotates.	The	time	for	repositioning	the	arm	is	called	seek	time,	and	it	increases	with	the	distance	the	arm	must	move.	Typical
seek	time	range	from	2	to	30	milliseconds.	Average	seek	time	is	the	average	of	the	seek	time,	measured	over	a	sequence	of	(uniformly	distributed)	random	requests,	and	it	is	about	one	third	of	the	worst-	case	seek	time.	Once	the	seek	has	occurred,	the	time	spent	waiting	for	the	sector	to	be	accesses	to	appear	under	the	head	is	called	rotational
latency	time.	Average	rotational	latency	time	is	about	half	of	the	time	for	a	full	rotation	of	the	disk.	(Typical	rotational	speeds	of	disks	ranges	from	60	to	120	rotations	per	second).	The	access	time	is	then	the	sum	of	the	seek	time	and	the	latency	and	ranges	from	10	to	40	milli-sec.	2.	data	transfer	rate,	the	rate	at	which	data	can	be	retrieved	from	or
stored	to	the	disk.	Current	disk	systems	support	transfer	rate	from	1	to	5	megabytes	per	second.	137.	Paper	Name:	Computer	Organization	and	Architecture	3.	reliability,	measured	by	the	mean	time	to	failure.	The	typical	mean	time	to	failure	of	disks	today	ranges	from	30,000	to	800,000	hours	(about	3.4	to	91	years).	Optimization	of	Disk-Block	Access
1.	Data	is	transferred	between	disk	and	main	memory	in	units	called	blocks.	2.	A	block	is	a	contiguous	sequence	of	bytes	from	a	single	track	of	one	platter.	3.	Block	sizes	range	from	512	bytes	to	several	thousand.	4.	The	lower	levels	of	file	system	manager	covert	block	addresses	into	the	hardware-level	cylinder,	surface,	and	sector	number.	5.	Access	to
data	on	disk	is	several	orders	of	magnitude	slower	than	is	access	to	data	in	main	memory.	Optimization	techniques	besides	buffering	of	blocks	in	main	memory.	o	Scheduling:	If	several	blocks	from	a	cylinder	need	to	be	transferred,	we	may	save	time	by	requesting	them	in	the	order	in	which	they	pass	under	the	heads.	A	commonly	used	disk-arm
scheduling	algorithm	is	the	elevator	algorithm.	o	File	organization.	Organize	blocks	on	disk	in	a	way	that	corresponds	closely	to	the	manner	that	we	expect	data	to	be	accessed.	For	example,	store	related	information	on	the	same	track,	or	physically	close	tracks,	or	adjacent	cylinders	in	order	to	minimize	seek	time.	IBM	mainframe	OS's	provide
programmers	fine	control	on	placement	of	files	but	increase	programmer's	burden.	UNIX	or	PC	OSs	hide	disk	organizations	from	users.	Over	time,	a	sequential	file	may	become	fragmented.	To	reduce	fragmentation,	the	system	can	make	a	back-up	copy	of	the	data	on	disk	and	restore	the	entire	disk.	The	restore	operation	writes	back	the	blocks	of
each	file	continuously	(or	nearly	so).	Some	systems,	such	as	MS-DOS,	have	utilities	that	scan	the	disk	and	then	move	blocks	to	decrease	the	fragmentation.	Nonvolatile	write	buffers.	Use	nonvolatile	RAM	(such	as	battery-back-up	RAM)	to	speed	up	disk	writes	drastically	(first	write	to	nonvolatile	RAM	buffer	and	inform	OS	that	writes	completed).	o	Log
disk.	Another	approach	to	reducing	write	latency	is	to	use	a	log	disk,	a	disk	devoted	to	writing	a	sequential	log.	All	access	to	the	log	disk	is	sequential,	essentially	eliminating	seek	time,	and	several	consecutive	blocks	can	be	written	at	once,	making	writes	to	log	disk	several	times	faster	than	random	writes.	7.3.2	Magnetic	Tape	Information
Organization	on	Magnetic	Tapes	IRG	block	1	block	2	block	3	block	3	R1	R2	R3	R4R5	R6	R1	file	i	EOF	Auxili	138.	Paper	Name:	Computer	Organization	and	Architecture	A	magnetic	tape	transport	consists	of	the	electrical,	mechanical,	and	electronic	components	to	provide	the	parts	and	control	mechanism	for	a	magnetic-tape	unit.	The	tape	itself	is	a
strip	of	plastic	coated	with	a	magnetic	recording	medium.	Bits	are	recorded	as	magnetic	spots	on	the	tape	along	several	tracks.	Usually,	seven	or	nine	bits	are	recorded	simultaneously	to	form	a	character	together	with	a	parity	bit.	Read/write	heads	are	mounted	one	in	each	track	so	that	data	can	be	recorded	and	read	as	a	sequence	of	characters.
Magnetic	tape	units	can	be	stopped,	started	to	move	forward	or	in	reverse,	or	can	be	rewound.	They	cannot	be	started	or	stopped	fast	enough	between	individual	characters.	7.4	Cache	Memory	RAM	memory	can	be	accessed	incredibly	fast.	How	fast?	Well,	standard	SDRAM	has	a	clock	pulse	of	133MHz.	That	means	a	word	of	memory	can	be	accessed
Organization	of	Disk	Hardware	Trac	k	Moving	Head	Disk	Fixed	Head	Disk	139.	Paper	Name:	Computer	Organization	and	Architecture	133000000	times	a	second.	Or	in	other	words,	it	takes	about	0.0000000075	seconds	to	do	a	memory	read.	Sounds	fast.	But	actually	the	speed	may	be	more	like	60	ns	(0.00000006	seconds)	because	of	latency.	Problem
is	that	CPU's	now	run	at	about	1GHz,	or	on	a	clock	pulse	about	1000000000	times	a	second	or	every	0.000000001	second	(1	ns).	That	means	that	if	the	CPU	is	working	with	memory	most	of	the	time	it	will	be	sitting	around	doing	nothing	(98%	of	the	time).	For	that	reason	we	set	up	a	smaller	amount	of	SRAM	called	cache	memory	that	the	CPU	works
with	directly	instead	of	the	slower	(and	larger)	SDRAM.	SRAM	(built	using	combinatorial	logic	gates	instead	of	capacitors)	has	an	access	speed	of	about	10	ns.	So	what	is	the	essential	point	here?	Make	sure	that	the	memory	that	the	CPU	needs	to	access	is	already	in	the	cache	when	it	needs	it.	We	will	look	at	methods	of	using	cache	memory	and	its
interaction	with	the	rest	of	RAM	in	this	chapter.	7.4.1	Direct	Mapping	The	significant	overhead	of	associative	memory	and	all	those	addresses	can	be	avoided	by	not	storing	addresses.	Instead,	we	will	store	data	in	the	cache	just	like	we	do	in	RAM.	But	then	we	need	some	way	to	map	lots	of	RAM	addresses	to	much	fewer	addresses	in	the	cache.	Some
kind	of	arithmatic.	This	is	called	direct	mapping.	In	this	scheme	all	addresses	with	the	same	lower	order	bits	will	map	to	the	same	address	in	the	cache.	If	we	have	only	1K	of	cache,	we	will	use	only	the	last	10	lower	order	bits	of	the	RAM	address	for	the	cache	address,	for	4K	we	will	use	the	last	12	bits.	Let's	say	we	do	that,	we	have	4K	cache	for	a	64K
RAM	of	the	relatively	simple	CPU.	In	that	case,	how	many	RAM	addresses	will	map	to	the	same	address	in	the	cache?	How	will	we	resolve	the	collisions?	In	direct	mapping,	we	resolve	the	collisions	by	storing	the	rest	of	the	RAM	address	(the	last	4	higher	order	bits	in	this	case)	with	the	word	of	data,	Something	Like	this:	140.	Paper	Name:	Computer
Organization	and	Architecture	The	left	over	bits	stored	with	the	data	are	called	the	tag.	To	access	a	word	in	memory	the	CPU	first	checks	to	see	if	it	is	in	the	cache	by	going	to	the	address	of	the	last	10	bits	of	RAM	(the	index)	and	then	checking	the	tag	to	make	sure	it	matches	the	higher	order	bits,	and	also	checking	the	valid	bit	to	make	sure	it	is
valid.	What	if	the	tag	does	not	match?	Of	course	direct-mapped	cache	can	be	built	with	lines	as	well,	something	like	141.	Paper	Name:	Computer	Organization	and	Architecture	7.4.2	Associative	Memory	Cache	You	have	to	remember	that	cache	memory	is	by	definition	only	a	subset	of	the	total	RAM.	Only	a	select	few	words	of	memory	can	fit	into	the
cache.	So	which	ones	get	to	fit	in	the	cache?	That	depends	on	what	is	needed.	Well,	how	will	we	address	this	memory.	Remember,	that	on	the	relatively	simple	CPU,	RAM	memory	is	addressed	with	a	16	bit	address,	something	like	this:	where	each	byte	is	accessed	with	a	specific	16	bit	address	like	we	discussed	in	the	lecture	on	memory	location.	But
that	will	not	work	for	the	cache	because	different	words	of	memory	will	be	smushed	together	in	no	particular	order.	So,	the	first	method	of	storage	we	will	try	for	cache	is	to	include	the	RAM	memory	address	for	each	byte	of	RAM	that	is	now	being	stored	in	the	cache,	something	like	this:	142.	Paper	Name:	Computer	Organization	and	Architecture
This	is	called	associative	cache.	Notice	that	there	is	a	great	deal	of	overhead	here	since	each	byte	needs	an	additional	2	bytes	of	storage	for	its	address,	along	with	an	extra	bit	of	information	indicating	that	this	byte	is	a	valid	piece	of	RAM.	With	associative	memory,	access	to	a	byte	is	determined	by	the	data	input	to	the	circuit.	It	is	tested	against	the
mask	register	to	see	which	bits	are	the	address.	Those	need	to	match	exactly	with	the	data.	If	the	byte	is	also	valid	then	a	bit	is	set	for	that	location	in	the	match	register	according	to	the	circuit	shownbelow:	Argument	register(A)	Key	register	(K)	Associative	memory	array	and	logic	m	words	n	bits	per	word	Match	register	Input	Read	Write	M
Associative	Memory	143.	Paper	Name:	Computer	Organization	and	Architecture	This	circuit	is	repeated	for	each	word	in	memory.	In	this	way	more	than	one	word	could	be	marked	as	matching	in	the	match	register.	But	in	pactice,	with	cache	memory,	each	word	from	RAM	would	only	have	one	copy	in	the	cache	so	only	one	bit	in	the	match	register
would	be	set	at	a	time.	Compare	each	word	in	CAM	in	parallel	with	the	content	of	A(Argument	Register)	-	If	CAM	Word[i]	=	A,	M(i)	=	1	-	Read	sequentially	accessing	CAM	for	CAM	Word(i)	for	M(i)	=	1	-	K(Key	Register)	provides	a	mask	for	choosing	a	particular	field	or	key	in	the	argument	in	A	(only	those	bits	in	the	argument	that	have	1’s	in	their
corresponding	position	of	K	are	compared)	By	the	way,	for	a	4K	associative	memory	cache,	what	is	the	size	of	the	match	register?	Associative	memory	with	lines	As	you	can	see	the	overhead	for	associative	memory	is	significant.	One	way	to	lessen	the	overhead	to	to	group	together	bytes	of	memory	into	chunks	with	only	one	address	for	the	whole
chunk.	These	"chunks"	of	memory	are	called	lines.	The	associative	memory	with	lines	can	be	built	like	this:	144.	Paper	Name:	Computer	Organization	and	Architecture	Obviously,	this	saves	considerably	on	overhead	of	storage.	What	is	another	advantage	of	using	lines	of	data?	7.4.3	Set-Associative	Cache	What	is	the	inherent	drawback	of	direct-
mapping?	To	overcome	the	problems	with	direct-mapping	designers	thought	of	a	third	scheme	called	Set-associative	mapping.	This	version	of	the	cache	memory	is	really	just	another	type	of	direct-mapping.	But	instead	of	a	single	word	of	memory	being	able	to	occupy	a	given	index	location	there	is	room	for	two	or	more	words.	In	this	example,	four
ways	are	stored	for	each	index.	145.	Paper	Name:	Computer	Organization	and	Architecture	The	tag	still	has	to	be	matched	in	order	to	find	the	word	we	want	from	RAM	but	now	we	get	to	look	at	four	canidates	to	see	if	one	matches.	So	you	have	a	4	times	greater	chance	of	finding	what	you	are	looking	for.	Locality	of	Reference	-	The	references	to
memory	at	any	given	time	interval	tend	to	be	confined	within	a	localized	areas	-	This	area	contains	a	set	of	information	and	the	membership	changes	gradually	as	time	goes	by	-	Temporal	Locality	The	information	which	will	be	used	in	near	future	is	likely	to	be	in	use	already(	e.g.	Reuse	of	information	in	loops)	-	Spatial	Locality:If	a	word	is	accessed,
adjacent(near)	words	are	likely	accessed	soon(e.g.	Related	data	items	(arrays)	are	usually	stored	together;	instructions	are	executed	sequentially)	Cache	-	The	property	of	Locality	of	Reference	makes	the	Cache	memory	systems	work	-	Cache	is	a	fast	small	capacity	memory	that	should	hold	those	information	which	are	most	likely	to	be	accessed	Main
memory	Cache	memory	CPU	146.	Paper	Name:	Computer	Organization	and	Architecture	7.4.4	Virtual	Memory	Storage	allocation	has	always	been	an	important	consideration	in	computer	programming	due	to	the	high	cost	of	main	memory	and	the	relative	abundance	and	lower	cost	of	secondary	storage.	Program	code	and	data	required	for	execution
of	a	process	must	reside	in	main	memory	to	be	executed,	but	main	memory	may	not	be	large	enough	to	accomodate	the	needs	of	an	entire	process.	Early	computer	programmers	divided	programs	into	sections	that	were	transferred	into	main	memory	for	a	period	of	processing	time.	As	the	program	proceeded,	new	sections	moved	into	main	memory
and	replaced	sections	that	were	not	needed	at	that	time.	In	this	early	era	of	computing,	the	programmer	was	responsible	for	devising	this	overlay	system.	As	higher	level	languages	became	popular	for	writing	more	complex	programs	and	the	programmer	became	less	familiar	with	the	machine,	the	efficiency	of	complex	programs	suffered	from	poor
overlay	systems.	The	problem	of	storage	allocation	became	more	complex.	Two	theories	for	solving	the	problem	of	inefficient	memory	management	emerged	--	static	and	dynamic	allocation.	Static	allocation	assumes	that	the	availability	of	memory	resources	and	the	memory	reference	string	of	a	program	can	be	predicted.	Dynamic	allocation	relies	on
memory	usage	increasing	and	decreasing	with	actual	program	needs,	not	on	predicting	memory	needs.	Program	objectives	and	machine	advancements	in	the	'60s	made	the	predictions	required	for	static	allocation	difficult,	if	not	impossible.	Therefore,	the	dynamic	allocation	solution	was	generally	accepted,	but	opinions	about	implementation	were
still	divided.	One	group	believed	the	programmer	should	continue	to	be	responsible	for	storage	allocation,	which	would	be	accomplished	by	system	calls	to	allocate	or	de-	allocate	memory.	The	second	group	supported	automatic	storage	allocation	performed	by	the	operating	system,	because	of	increasing	complexity	of	storage	allocation	and	emerging
importance	of	multiprogramming.	In	1961,	two	groups	proposed	a	one-level	memory	store.	One	proposal	called	for	a	very	large	main	memory	to	alleviate	any	need	for	storage	allocation.	This	solution	was	not	possible	due	to	very	high	cost.	The	second	proposal	is	known	as	virtual	memory.	7.4.5	Associative	memory	Page	Table	Space	Virtual	memory	is
a	technique	that	allows	processes	that	may	not	be	entirely	in	the	memory	to	execute	by	means	of	automatic	storage	allocation	upon	request.	The	term	virtual	memory	refers	to	the	abstraction	of	separating	LOGICAL	memory--memory	as	seen	by	the	process--from	PHYSICAL	memory--memory	as	seen	by	the	processor.	Because	of	this	separation,	the
programmer	needs	to	be	aware	of	only	the	logical	147.	Paper	Name:	Computer	Organization	and	Architecture	memory	space	while	the	operating	system	maintains	two	or	more	levels	of	physical	memory	space.	A	random-access	memory	page	table	is	inefficient	with	respect	to	storage	utilization.	The	virtual	memory	abstraction	is	implemented	by	using
secondary	storage	to	augment	the	processor's	main	memory.	Data	is	transferred	from	secondary	to	main	storage	as	and	when	necessary	and	the	data	replaced	is	written	back	to	the	secondary	storage	according	to	a	predetermined	replacement	algorithm.	If	the	data	swapped	is	designated	a	fixed	size,	this	swapping	is	called	paging;	if	variable	sizes	are
permitted	and	the	data	is	split	along	logical	lines	such	as	subroutines	or	matrices,	it	is	called	segmentation.	Some	operating	systems	combine	segmentation	and	paging.	The	diagram	illustrates	that	a	program	generated	address	(1)	or	"logical	address"	consisting	of	a	logical	page	number	plus	the	location	within	that	page	(x)	must	be	interpreted	or
"mapped"	onto	an	actual	(physical)	main	memory	address	by	the	operating	system	using	an	address	translation	function	or	mapper	(2).	If	the	page	is	present	in	the	main	memory,	the	mapper	substitutes	the	physical	page	frame	number	for	the	logical	number	(3).	If	the	mapper	detects	that	the	page	requested	is	not	present	in	main	memory,	a	fault
occurs	and	the	page	must	be	read	into	a	frame	in	main	memory	from	secondary	storage	(4,5)	148.	Paper	Name:	Computer	Organization	and	Architecture	7.4.5	Associative	Memory	and	the	Page	Table	The	implementation	of	the	page	table	is	vital	to	the	efficiency	of	the	virtual	memory	technique,	for	each	memory	reference	must	also	include	a
reference	to	the	page	table.	The	fastest	solution	is	a	set	of	dedicated	registers	to	hold	the	page	table	but	this	method	is	impractical	for	large	page	tables	because	of	the	expense.	But	keeping	the	page	table	in	main	memory	could	cause	intolerable	delays	because	even	only	one	memory	access	for	the	page	table	involves	a	slowdown	of	100	percent	and
large	page	tables	can	require	more	than	one	memory	access.	The	solution	is	to	augment	the	page	table	with	special	high-speed	memory	made	up	of	associative	registers	or	translation	lookaside	buffers	(TLBs)	which	are	called	ASSOCIATIVE	MEMORY.	Demonstation	of	the	operation	of	Virtual	Memory.	Each	of	these	associative	memory	registers
contains	a	key	and	a	value.	The	keys	to	associative	memory	registers	can	all	be	compared	simultaneously.	If	a	match	is	found,	the	value	corresponding	to	the	key	is	output.	This	returned	value	contains	the	physical	address	of	the	logical	page	and	an	access	code	to	indicate	its	presence	in	main	memory.	Associative	memory	registers	are	very	expensive
so	only	the	most	frequently	accessed	pages	should	be	represented	by	them.	How	many	associative	memory	registers	are	required	for	a	virtual	memory	implementation	to	run	efficiently?	The	percentage	of	times	a	page	is	found	in	the	associative	memory	registers	is	called	HIT	RATIO.	The	effective	access	time	of	the	virtual	memory	system	can	be
computed	by	multiplying	the	hit	ratio	by	the	access	time	using	associative	memory	and	adding	(1	-	the	hit	ratio)	times	the	access	time	using	the	main	memory	page	table.	(Remember,	using	the	page	table	requires	an	extra	access	to	main	memory.)	This	total	is	then	compared	to	the	time	for	a	simple	access	to	the	main	memory.	For	example:	If	the
access	time	for	main	memory	is	120	nanoseconds	and	the	access	time	for	associative	memory	is	15	nanoseconds	and	the	hit	ratio	is	85	percent,	then	149.	Paper	Name:	Computer	Organization	and	Architecture	access	time	=	.85	x	(15	+	120)	+	(1	-	.85)	x	(15	+	120	+120)	=	153	nanoseconds.	Since	the	simple	access	time	is	120	nanoseconds,	this
represents	a	slowdown	of	27	percent	compared	to	the	simple	main	memory	access.	Virtual	Memory	up	to	now:	all	of	a	process	in	main	memory	(somewhere)	•	partitions,	pages,	segments	•	now:	virtual	memory	•	allow	execution	of	processes	which	may	be	partially	in	memory	•	benefits:	•	programs	can	be	large	and	memory	can	be	small	•	increased
multiprogramming	IMPLIES	better	performance	•	less	I/O	for	loading/swapping	programs	•	why	programs	don't	need	to	be	entirely	in	memory:	•	code	for	unusual	error	conditions	•	more	memory	allocated	than	is	needed	•	some	features	of	program	rarely	used	•	VM	is	the	separation	of	user	logical	memory	from	physical	memory	Page	Table	•	logical
address	vs.	physical	address	•	demand	paging:	only	``necessary''	pages	are	brought	into	memory	7.5.6	Page	Replacement	A	virtual	memory	system	is	a	combination	of	hardware	and	software	techniques.	The	memory	management	software	system	handles	all	the	software	operations	for	the	efficient	utilization	of	memory	space.	It	must	decide	1)	Which
page	in	main	memory	ought	to	be	removed	to	make	room	for	a	new	page	150.	Paper	Name:	Computer	Organization	and	Architecture	2)	When	a	new	page	is	to	be	transferred	from	auxiliary	memory	to	main	memory	3)	Where	the	page	is	to	be	transferred	from	auxiliary	memory	to	main	mapping	mechanism	and	the	memory	management	software
together	constitute	the	architecture	of	virtual	memory.	Consider	the	following	virtual	page	reference	sequence:	page	1,	2,	3,	4,	2,	1,	5,	6,	2,	1,	2,	3.	This	indicates	that	these	particular	pages	need	to	be	accessed	by	the	computer	in	the	order	shown.	Consider	each	of	the	following	4	algorithm-frame	combinations:	•	LRU	with	3	frames	•	FIFO	with	3
frames	•	LRU	with	4	frames	•	FIFO	with	4	frames	Print	a	copy	of	this	page.	For	each	of	the	4	combinations,	below,	move	from	left	to	right	as	the	virtual	page	numbers	are	requested	in	sequence.	Put	each	virtual	page	into	one	of	the	frames	by	writing	its	number	there	(initially	while	empty	frames	remain,	load	them	from	top	down).	When	all	frames	are
already	occupied	by	other	pages,	choose	the	right	page	to	displace	according	to	the	applicable	algorithm	(LRU	or	FIFO)	and	mark	the	event	with	an	F	for	Fault.	(Do	not	count	a	fault	when	loading	a	missing	page	at	a	time	when	there	is	a	frame	unoccupied,	in	other	words	on	the	first	3	or	4	loads.)	When	finished,	total	the	number	of	page	faults	and
write	it	in	where	indicated.	Submit	the	printout.	The	assignment	will	be	graded	on	8	items:	the	4	final	page	configuration	figures	at	the	extreme	right	(correct	or	incorrect),	and	the	4	page	fault	totals	written	(correct	or	incorrect).	Please	work	carefully.	THREE	Page	Frames	Least-recently-used	(LRU)	method:	1	2	3	4	2	1	5	6	2	1	2	3	Number	of	page
faults	for	LRU/3:	First-in-First-out	(FIFO)	method:	1	2	3	4	2	1	5	6	2	1	2	3	151.	Paper	Name:	Computer	Organization	and	Architecture	Number	of	page	faults	for	FIFO/3:	FOUR	Page	Frames	Least-recently-used	(LRU)	method:	1	2	3	4	2	1	5	6	2	1	2	3	Number	of	page	faults	for	LRU/4:	First-in-First-out	(FIFO)	method:	1	2	3	4	2	1	5	6	2	1	2	3	Number	of
page	faults	for	FIFO/4:	152.	Paper	Name:	Computer	Organization	and	Architecture	UNIT	8	INTRODUCTION	TO	PARALLEL	PROCESSING	8.1	Pipelining	8.1.1	Parallel	processing	8.1.2	Pipelining	general	consideration	8.1.3	Arithmetic	pipeline	8.1.4	Instruction	pipeline	8.1	.1	Parallel	Processing	PARALLEL	PROCESSING	is	a	term	used	to	denote	a
large	class	of	techniques	that	are	used	to	provide	simultaneous	data-processing	tasks	for	the	purpose	of	increasing	the	computational	speed	of	a	computer	system.	Instead	of	processing	each	instruction	sequentially	as	in	a	conventional	computer,	a	parallel	processing	system	is	able	to	perform	concurrent	data	processing	to	achieve	faster	execution
time.	For	example,	while	an	instruction	is	being	executed	in	the	ALU,	the	next	instruction	can	be	read	from	memory.	The	system	may	have	two	or	more	ALUs	and	be	able	to	execute	two	or	more	instructions	at	the	same	time.	Furthermore,	the	system	may	have	two	or	more	processors	operating	concurrently.	The	purpose	of	parallel	processing	is	to
speed	up	the	computer	processing	capability	and	increase	its	throughput,	that	is,	the	amount	of	processing	that	can	be	accomplished	during	a	given	interval	of	time.	The	amount	of	increase	with	parallel	processing,	and	with	it,	the	cost	of	the	system	increases.	However,	technological	developments	have	reduced	hardware	costs	to	the	point	where
parallel	processing	techniques	are	economically	feasible.	Parallel	processing	can	be	viewed	from	various	levels	of	complexity.	At	the	lowest	level,	we	distinguish	between	parallel	and	serial	complexity.	At	the	lowest	level,	we	distinguish	between	parallel	and	serial	operations	by	the	type	of	registers	used.	Shift	registers	operate	in	serial	fashion	one	bit
at	a	time,	while	registers	with	parallel	load	operate	with	all	the	bits	of	the	word	simultaneously,	parallel	processing	at	a	higher	level	of	complexity	cab	be	achieved	by	have	a	multiplicity	of	functional	units	that	perform	identical	or	different	operations	simultaneously.	Parallel	processing	is	established	by	distributing	the	data	among	the	multiple
functional	units.	For	example,	the	arithmetic	logic	and	shift	operations	can	be	separated	into	three	units	and	the	operands	diverted	to	each	unit	under	the	supervision	of	a	control	unit.	There	are	a	variety	of	ways	that	parallel	processing	can	be	classified.	It	cab	be	considered	from	the	internal	organization	of	the	processors,	from	the	interconnection
structure	between	processors,	or	from	the	flow	of	information	through	the	system.	One	153.	Paper	Name:	Computer	Organization	and	Architecture	classification	introduced	by	M.J.	Flynn	considers	the	organization	of	a	computer	system	by	the	number	of	instructions	and	data	items	that	are	manipulated	simultaneously.	The	normal	operation	of	a
computer	is	to	fetch	instructions	from	memory	and	execute	them	in	the	processor.	The	sequence	of	instructions	read	from	memory	constitutes	an	instruction	stream.	The	operations	performed	on	the	data	in	the	processor	constitute	a	data	stream.	Parallel	processing	may	occur	in	the	instruction	stream,	in	the	data	stream,	or	in	both.	Flynn’s
classification	divides	computers	into	four	major	groups	as	follows:	Single	instruction	stream,	single	data	stream	(SISD)	Single	instruction	stream,	multiple	data	stream	(SIMD)	Multiple	instruction	streams,	single	data	stream	(MISD)	Multiple	instruction	streams,	multiple	data	stream	(MIMD)	SISD	represents	the	organizations	of	a	single	computer
containing	a	control	unit,	a	processor	unit,	and	a	memory	unit.	Instructions	are	executed	sequentially	and	the	system	may	or	may	not	have	internal	parallel	processing	capabilities.	Parallel	processing	in	this	case	may	be	achieved	by	means	of	multiple	functional	units	or	by	pipeline	processing.	SIMD	represents	an	organization	that	includes	many
processing	units	under	the	supervision	of	a	common	control	unit.	All	processors	receive	the	same	instruction	from	the	control	unit	but	operate	on	different	items	of	data.	The	shared	memory	unit	must	contain	multiple	modules	so	that	it	can	communicate	with	all	the	processors	simultaneously.	MISD	structure	is	only	of	theoretical	interest	since	no
practical	system	has	been	constructed	using	this	organization.	MIMD	organization	refers	to	a	computer	system	capable	of	processing	several	programs	at	the	same	time.	Most	multiprocessor	and	multi-computer	systems	can	be	classified	in	this	category.	Flynn’s	classification	depends	on	the	distinction	between	the	performance	of	the	control	unit	and
the	data	processing	unit.	It	emphasizes	the	behavioral	characteristics	of	the	computer	system	rather	than	its	operational	and	structural	interconnections.	One	type	of	parallel	processing	that	does	not	fit	Flynn’s	classification	is	pipelining.	Here	we	are	considering	parallel	processing	under	the	following	main	topics:	1.	Pipeline	processing	2.	Vector
processing	3.	Array	processors	Pipeline	processing	is	an	implementation	technique	where	arithmetic	sub	operations	or	the	phases	of	a	computer	instruction	cycle	overlap	in	execute	vector-processing	deals	with	computations	involving	large	vectors	and	matrices.	Array	processors	computations	on	large	arrays	of	data.	154.	Paper	Name:	Computer
Organization	and	Architecture	8.1.2	Pipelining	general	consideration	Pipelining	is	a	technique	of	decomposing	a	sequential	process	into	sub	operations,	with	each	sub	process	being	executed	in	special	dedicated	segments	that	operates	concurrently	with	all	other	segments.	A	pipeline	can	be	visualized	as	a	collection	of	processing	segments	through
which	binary	information	flows.	Each	segment	performs	partial	processing	dictated	by	the	way	the	task	partitioned.	The	result	obtained	from	the	computation	in	each	segment	is	transferred	to	the	next	segment	in	the	pipeline.	The	final	result	is	obtained	after	the	data	have	passed	through	all	segments.	The	name	“pipeline”	implies	the	flow	of
information	analogous	to	an	industrial	assembly	line.	It	is	character	of	pipelines	that	several	computations	can	be	in	progress	in	distinct	segments	at	the	same	time.	The	overlapping	of	computations	is	made	possible	by	associating	a	register	with	each	segment	in	the	pipeline.	The	registers	provide	isolation	between	each	segment	so	that	each	can
operate	on	distinct	data	simultaneously.	Perhaps	the	simplest	way	of	viewing	the	pipeline	structure	is	to	imagine	that	each	segment	consists	of	an	input	register	followed	by	a	combinational	circuit?	The	register	holds	the	data	and	the	combinational	circuit	performs	the	sub	operation	in	the	particular	segment.	The	output	of	the	combinational	circuit	in
a	given	segment	is	applied	to	the	input	register	of	the	next	segment.	A	clock	is	applied	to	all	registers	after	enough	time	has	elapsed	to	perform	all	segment	activity.	In	this	way	the	information	flows	through	the	pipeline	one	step	at	a	time.	The	pipeline	organization	will	be	demonstrated	by	means	of	a	simple	example.	Suppose	that	we	want	to	perform
the	combined	multiply	and	add	operation	with	a	stream	of	numbers.	Ai	*	Bi	+	Ci	for	I	=	1,	2,	3,	………..,7	Each	sup	operation	is	to	be	implemented	in	a	segment	within	a	pipeline.	Each	segment	has	one	or	two	registers	and	a	combinational	circuit	as	shown	in	fig.	9.2.	R1	through	R5	are	registers	that	receive	new	data	with	every	clock	pulse.	The
multiplier	and	adder	are	combinational	circuits.	The	sub	operations	performed	in	each	segment	of	the	pipeline	are	as	follows:	R1	←	Ai,	R2	←	Bi	Input	Ai	and	Bi	R3	←	R1	*	R2,	R4	←	C,	Multiply	and	input	Ci	R5	←	R3	+	R4	Add	Ci	to	product	The	five	registers	are	loaded	with	new	data	every	clock	pulse.	The	effect	of	each	clock	is	shown	in	Table	9-1.	The
first	clock	pulse	transfers	A1	and	B1	into	R1	and	R2.	The	second	clock	pulse	transfers	the	product	of	R1	and	R2	into	R3	and	C1	into	R4.	The	same	clock	pulse	transfers	A2	and	B2	into	R1	and	R2.The	third	clock	pulse	operates	on	all	three	155.	Paper	Name:	Computer	Organization	and	Architecture	segments	simultaneously.	It	places	A3	and	B3	into	R1
and	R2,	transfers	the	product	of	R1	and	R2	into	R3,	transfers	C2	into	R4,	and	places	the	sum	of	R3	and	R4	into	R5.	It	takes	three	clock	pulses	to	fill	up	the	pipe	and	retrieve	the	first	output	from	R5.	From	there	on,	each	clock	produces	a	new	output	and	moves	the	data	one	step	down	the	pipeline.	This	happens	as	long	as	new	input	data	flow	into	the
system.	When	no	more	input	data	are	available,	the	clock	must	continue	until	the	last	output	emerges	out	of	the	pipeline.	Figure	Example	of	pipeline	processing	156.	Paper	Name:	Computer	Organization	and	Architecture	TABLE	Content	of	Registers	in	Pipeline	Example	_____________________________________________________________	Clock	Segment	1
Segment	2	Segment	3	Pulse	________	___________	_________	Number	R1	R2	R3	R4	R5	1	A1	B1	-	-	-	2	A2	B2	A1	*	B1	C1	-	3	A3	B3	A2	*	B2	C2	A1	*	B1	+	C1	4	A4	B4	A3	*	B3	C3	A2	*	B2	+	C2	5	A5	B5	A4	*	B4	C4	A3	*	B3	+	C3	6	A6	B6	A5	*	B5	C5	A4	*	B4	+	C4	7	A7	B7	A6	*	B6	C6	A5	*	B5	+	C5	Ai	R1	Multiplier	Bi	R2	R3	Bi	R4	Adder	R5	157.	Paper	Name:
Computer	Organization	and	Architecture	8	-	-	A7	*	B7	C7	A6	*	B6	+	C6	9	-	-	-	-	A7	*	B7	+	C7	8.1.3	Arithmetic	pipeline	Arithmetic	Pipeline:	Pipeline	arithmetic	units	are	usually	found	in	very	high-speed	computers.	They	are	used	to	implement	floating-point	operations,	multiplication	of	fixed-point	numbers,	and	similar	computations	encountered	in
scientific	problems.	A	pipeline	multiplier	is	essentially	an	array	multiplier	as	described	in	Fig.	10-10,	with	special	adders	designed	to	minimize	the	carry	propagation	time	through	the	partial	products.	Floating-point	operations	are	easily	decomposed	into	sub	operations	as	demonstrated	in	Sec.	10-5.	We	will	now	show	an	example	of	a	pipeline	unit	for
floating-	point	addition	and	subtraction.	The	inputs	to	the	floating-point	adder	pipeline	are	two	normalized	floating-point	binary	numbers.	X	=	A	X	2a	Y	=	B	X	2b	A	and	B	are	two	fractions	that	represents	the	mantissas	and	a	and	b	are	the	exponents.	The	floating-point	addition	and	subtraction	can	be	performed	in	four	segments,	as	shown	in	Fig.	9-6.



The	registers	labeled	R	are	placed	between	the	segments	to	store	intermediate	results.	The	sub	operations	that	are	performed	in	the	four	segments	are:	1.	Compare	the	exponents.	2.	Align	the	mantissas.	3.	Add	or	subtract	the	mantissas	4.	Normalize	the	result.	This	follows	the	procedure	outlined	in	the	flowchart	of	Fig.	10-15	but	with	some	variations
that	are	used	to	reduce	the	execution	time	of	the	sub	operations.	The	exponents	are	compared	by	subtracting	them	to	determine	their	difference.	The	larger	exponent	is	chosen	as	the	exponent	of	the	result.	The	exponent	difference	determines	how	many	times	the	mantissa	associated	with	the	smaller	exponent	must	be	shifted	to	the	right.	This
procedures	and	alignment	of	the	two	mantissas.	It	should	be	noted	that	the	shift	must	be	designed	as	a	combinational	circuit	to	reduce	the	shift	time.	The	two	mantissas	are	added	or	subtracted	in	segment	3.	The	result	is	normalized	in	segment	4.	When	an	overflow	occurs,	the	mantissa	of	the	sum	or	difference	is	shifted	right	and	the	exponent
incremented	by	one.	If	an	underflow	occurs,	the	number	of	leading	zeros	in	the	mantissa	determines	the	number	of	left	shifts	in	the	mantissa	and	the	number	that	must	be	subtracted	from	the	exponent.	158.	Paper	Name:	Computer	Organization	and	Architecture	The	following	numerical	example	may	clarify	the	sub	operations	performed	in	each
segment.	For	simplicity,	we	use	decimal	numbers,	although	Fig.	9-6	refers	to	binary	numbers.	Consider	the	two	normalized	floating-point	numbers:	X	=	0.9504	X	103	Y	=	0.8200	X	102	The	two	exponents	are	subtracted	in	the	first	segment	to	obtain	3	–	2	=	1.	The	larger	exponent	3	is	chosen	as	the	exponent	of	the	result.	The	next	segment	shifts	the
mantissa	of	Y	to	the	right	to	obtain	X	=	0.9504	X	103	Y	=	0.0820	X	103	This	aligns	the	two	mantissas	under	the	same	exponent.	The	addition	of	the	two	mantissas	in	segment	3	procedures	the	sum	Z	=	1.0324	X	103	Exponents	Mantissas	Difference	R	R	Compare	Exponents	By	subtraction	R	Choose	exponent	R	Adjust	Align	mantissas	R	Add	or	subtract
Mantissas	R	Normalize	159.	Paper	Name:	Computer	Organization	and	Architecture	Fig.	Pipeline	for	floating	point	addition	and	subtraction	The	sum	is	adjusted	by	normalizing	the	result	so	that	it	has	a	fraction	with	a	nonzero	first	digit.	This	is	done	by	shifting	the	mantissa	once	to	the	right	and	incrementing	the	exponent	by	one	to	obtain	the
normalized	sum.	Z	=	0.10324	X	104	The	comparator,	shifter,	adder	subtraction,	incrementer,	and	decremented	in	the	floating	point	pipeline	are	implemented	with	combinational	circuits.	Suppose	that	the	time	delays	of	the	four	segments	are	t1	=	60ns,	t2	=	70ns,	t3	=	100ns,	t4	=	80ns,	and	the	interface	register	have	a	delay	of	tr	=	10ns.	The	clock
circle	is	chosen	to	be	tp	=	t3	+	tr	=	110ns.	An	equivalent	no	pipeline	floating	point	adder	subtractor	will	have	a	delay	time	tn	=t1+	t2	+	t3	+	t4	+	tr	=	320	ns.	In	this	case	the	pipelined	adder	has	a	speedup	of	320/110	=	2.9	over	the	nonpipelined	adder.	8.1.4	Instruction	pipeline	Instruction	Pipeline:	Pipeline	processing	can	occur	not	only	in	the	data
stream	but	in	the	instruction	stream	as	well.	An	instruction	pipeline	reads	consecutive	instructions	from	memory	while	previous	instructions	are	being	executed	in	other	segments.	This	cause	the	instructions	fetch	and	execute	phases	to	overlap	and	perform	simultaneous	operations.	One	possible	digression	associated	with	such	a	scheme	is	that	an
instruction	may	cause	a	branch	out	of	sequence.	In	that	case	the	pipeline	must	be	emptied	and	all	the	instructions	that	have	been	read	from	memory	after	the	branch	instruction	must	be	discarded.	160.	Paper	Name:	Computer	Organization	and	Architecture	Consider	a	computer	with	an	instruction	fetch	unit	and	an	instruction	execution	unit	designed
to	provide	a	two-segment	pipeline.	The	instruction	fetch	segment	can	be	implemented	by	means	of	a	first-in,	first-out	(FIFO)	buffer.	This	is	a	type	of	unit	that	forms	a	queue	rather	than	a	stack.	Whenever	the	execution	unit	is	not	using	memory,	the	control	increments	the	program	counter	and	uses	its	address	value	to	read	consecutive	instructions
form	memory.	The	instructions	are	inserted	into	the	FIFO	buffer	so	that	they	can	be	executed	on	a	first-in,	first-out	basis.	Thus	an	instruction	stream	can	be	placed	in	a	queue,	waiting	for	decoding	and	processing	by	the	execution	segment.	The	instruction	stream	queuing	mechanism	provides	an	efficient	way	for	reducing	the	average	access	time	to
memory	for	reading	instructions.	Whenever	there	is	space	in	the	FIFO	buffer,	the	control	unit	initiates	the	next	instruction	fetch	phase.	The	buffer	acts	as	a	queue	form	which	control	then	extracts	the	instructions	for	the	execution	unit.	Computers	with	complex	instructions	require	other	phases	in	addition	to	the	fetch	and	execute	to	process	an
instruction	with	the	following	sequence	of	steps.	1.	Fetch	the	instruction	from	memory.	2.	Decode	the	instruction.	3.	Calculate	the	effective	address.	4.	Fetch	the	operands	from	memory.	5.	Execute	the	instruction.	6.	Store	the	result	in	the	proper	place.	There	are	certain	difficulties	that	will	prevent	the	instruction	pipeline	from	operating	at	its
maximum	rate.	Different	segments	may	take	different	times	to	operate	on	the	incoming	information.	Some	segments	are	skipped	for	certain	operations.	For	example,	a	register	mode	instruction	does	not	need	an	effective	address	calculation.	Two	or	more	segments	may	require	memory	access	at	the	same	time,	causing	one	segment	to	wait	until
another	is	finished	with	the	memory.	Memory	access	conflicts	are	sometimes	resolved	by	using	two	memory	buses	for	accessing	instructions	and	data	in	separate	modules.	In	this	way,	an	instruction	word	and	a	data	word	can	be	read	simultaneously	from	two	different	modules.	The	design	of	an	instruction	pipeline	will	be	most	efficient	if	the
instruction	cycle	is	divided	into	segments	of	equal	duration.	The	time	that	each	step	takes	to	fulfill	its	function	depends	on	the	instruction	and	the	way	it	is.	161.	Paper	Name:	Computer	Organization	and	Architecture	UNIT	9	VECTOR	PROCESSING	9.1	Vector	operations	9.2	Matrix	multiplication	9.3	Memory	interleaving	9.1	Vector	operations	There
are	certain	computational	problems	that	can	not	be	resolved	by	a	are	beyond	the	capabilities	of	a	conventional	computer	on	the	basis	of	the	fact	that	they	require	a	vast	number	of	computations	that	will	take	a	conventional	computer	days	or	even	weeks	to	complete.	In	many	science	and	engineering	applications,	the	problems	can	be	formulated	in
terms	of	vectors	and	matrices	that	tend	themselves	to	vector	processing.	Computers	with	vector	processing	capabilities	are	very	much	required	in	specialized	applications.	The	following	are	representative	application	areas	where	vector	processing	is	of	the	utmost	importance:	•	Long-range	weather	forecasting	•	Petroleum	explorations	•	Seismic	data
analysis	•	Medical	diagnosis	•	Aerodynamics	and	space	flight	simulations	•	Artificial	intelligence	and	expert	systems	•	Mapping	the	human	genome	•	Image	processing	Vector	and	parallel	processing	techniques	should	be	applied	to	achieve	result	of	high	performance	in	case	of	unavailability	of	complex	computers	to	speed	up	the	execution	time	of
instructions.	Many	scientific	problems	require	arithmetic	operations	on	large	arrays	of	numbers.	These	numbers	are	usually	formulated	as	vectors	and	matrices	of	relating	point	numbers.	To	examine	the	difference	between	a	conventional	scalar	processor	and	a	vector	processor,	consider	the	following	Fortan	Do	loop:	DO	20	I	=	1,	100	20:	C	(I)	=	B(I)
+	A	(I)	This	is	a	program	for	adding	two	vectors	A	and	B	of	length	100	produces	a	vector	C.	This	is	implemented	in	machine	language	by	the	following	sequence	of	operations:	Initialize	I	=	0	20	Read	A	(I)	Read	B	(I)	162.	Paper	Name:	Computer	Organization	and	Architecture	Store	C	(I)	=	A(I)	+B	(I)	Increment	I	=	I	+1	If	I	<	100	go	to	20	continue	This
constitutes	a	program	loop	that	reaches	a	pair	of	operations	from	arrays	A	and	B	and	perform	a	floating	point	addition.	The	loop	control	variable	is	then	updated	and	the	steps	repeat	100	times.	A	computer	capable	of	vector	processing	eliminates	the	overheads	associated	with	the	time	it	takes	to	fetch	and	execute	the	instruction	in	the	program	loop.	It
allows	operations	to	be	specified	with	a	single	vector	instructions	of	the	form	C	(1:100)	=	A	(1:	100)	+B	(1:	100)	The	vector	instructions	include	the	initial	address	of	the	operands,	the	length	of	the	vectors	and	the	operation	to	be	performed,	all	in	one	composite	instruction.	The	addition	is	done	with	a	pipelined	floating	point	adder.	A	possible
instruction	format	for	a	vector	instructions	is	shown	Figure	5.14.	Operation	Code	Base	address	source	1	Base	address	source	2	Base	address	destination	Vector	Length	Figure	5.14	This	is	essentially	a	three	address	instruction	with	three	fields	specifying	the	base	address	of	the	operands	and	an	additional	field	that	gives	the	length	of	the	data	items	in
the	vectors.	Example	9.2	Matrix	Multiplication	Matrix	multiplication	is	one	of	the	most	computational	intensive	operations	performed	in	computers	with	vector	processors.	The	multiplication	of	two	n	x	n	matrices	consists	of	n2	inner	products	or	n3	multiply-add	operations.	An	n	x	m	matrix	of	numbers	has	n	rows	and	m	columns	and	may	be	considered
as	constituting	a	set	of	n	row	vectors	or	a	set	of	m	column	vectors.	Consider,	for	example,	the	multiplication	of	two	3	x	3	matrices	A	and	B.	The	product	matrix	C	is	a	3	x	3	matrix	whose	elements	are	related	to	the	elements	of	A	and	B	by	the	inner	product:	kj	3	1k	ikij	baC	∑	=	×=	163.	Paper	Name:	Computer	Organization	and	Architecture	For	example,
the	number	in	the	first	row	and	first	column	of	matrix	C	is	calculated	by	letting	i	=	1,	j	=	1,	to	obtain	C11	=	a11	b11	+	a12	b21	+	a13	b31	This	requires	three	multiplications	and	(after	initializing	c11	to	0)	three	additions.	The	total	number	of	multiplications	or	additions	required	to	compute	the	matrix	product	is	9	x	3=	27.	If	we	consider	the	linked
multiply-add	operation	c	=	a	x	b	as	a	cumulative	operation,	the	product	of	two	n	x	n	matrices	requires	n2	multiply-add	operations.	The	computation	consists	of	n2	inner	products,	with	each	inner	product	requiring	n	multiply-add	operations,	assuming	that	c	is	initialized	to	zero	before	computing	each	element	in	the	product	matrix.	In	general,	the	inner
product	consists	of	the	sum	of	k	product	terms	of	the	form	C	=	A1B1	+	A2	B2	+	A3	+	B3	+	A4	+	B4	+	…	+	Ak	Bk	In	a	typical	application	k	may	be	equal	to	100	or	even	1000.	The	inner	product	calculation	on	a	pipeline	vector	processor	is	shown	in	Fig.	5.15.	The	values	of	A	and	B	are	either	in	memory	or	in	processor	registers.	The	floating-point
multiplier	pipeline	and	the	floating-point	adder	pipeline	are	assumed	to	have	four	segments	each.	All	segment	registers	in	the	multiplier	and	adder	are	initialized	to	0.	Therefore,	the	output	of	the	adder	is	0	for	the	first	eight	cycles	until	both	pipes	are	full.	Ai	and	Bi	pairs	are	brought	in	and-multiplied	at	a	rate	of	one	pair	per	cycle.	After	the	first	four
cycles,	the	products	begin	to	be	added	to	the	output	of	the	adder.	During	the	next	four	cycles	0	is	added	to	the	products	entering	the	adder	pipeline.	At	the	end	of	the	eighth	cycle,	the	first	four	products	A1	B1	through	A4	B4	are	in	the	four	adder	segments,	and	the	next	four	products,	A5B5	through	A8	E8	are	in	the	multiplier	segments.	At	the
beginning	of	the	ninth	cycle,	the	output	of	the	adder	is	A1B1	and	the	output	of	the	multiplier	is	A5	B5.	Thus	the	ninth	cycle	starts	the	addition	A1	B1	+	A5	B5	in	the	adder	pipeline.	The	tenth	cycle	starts	the	addition	A2	B2	+	A6	B6,	and	so	on.	This	pattern	breaks	down	the	summation	into	four	sections	as	follows:	Figure	5.15:	Pipeline	for	calculating	an
inner	product	164.	Paper	Name:	Computer	Organization	and	Architecture	9.3	Memory	interleaving	Interleaving	is	an	advanced	technique	used	by	high-end	motherboards/chipsets	to	improve	memory	performance.	Memory	interleaving	increases	bandwidth	by	allowing	simultaneous	access	to	more	than	one	chunk	of	memory.	This	improves
performance	because	the	processor	can	transfer	more	information	to/from	memory	in	the	same	amount	of	time,	and	helps	alleviate	the	processor-memory	bottleneck	that	is	a	major	limiting	factor	in	overall	performance.	Interleaving	works	by	dividing	the	system	memory	into	multiple	blocks.	The	most	common	numbers	are	two	or	four,	called	two-way
or	four-way	interleaving,	respectively.	Each	block	of	memory	is	accessed	using	different	sets	of	control	lines,	which	are	merged	together	on	the	memory	bus.	When	a	read	or	write	is	begun	to	one	block,	a	read	or	write	to	other	blocks	can	be	overlapped	with	the	first	one.	The	more	blocks,	the	more	that	overlapping	can	be	done.	As	an	analogy,	consider
eating	a	plate	of	food	with	a	fork.	Two-way	interleaving	would	mean	dividing	the	food	onto	two	plates	and	eating	with	both	hands,	using	two	forks.	(Four-way	interleaving	would	require	two	more	hands.	:^)	)	Remember	that	here	the	processor	is	doing	the	"eating"	and	it	is	much	faster	than	the	forks	(memory)	"feeding"	it	(unlike	a	person,	whose	hands
are	generally	faster.)	In	order	to	get	the	best	performance	from	this	type	of	memory	system,	consecutive	memory	addresses	are	spread	over	the	different	blocks	of	memory.	In	other	words,	if	you	have	4	blocks	of	interleaved	memory,	the	system	doesn't	fill	the	first	block,	and	then	the	second	and	so	on.	It	uses	all	4	blocks,	spreading	the	memory	around
so	that	the	interleaving	can	be	exploited.	Interleaving	is	an	advanced	technique	that	is	not	generally	supported	by	most	PC	motherboards,	most	likely	due	to	cost.	It	is	most	helpful	on	high-end	systems,	especially	servers,	that	have	to	process	a	great	deal	of	information	quickly.	The	Intel	Orion	chipset	is	one	that	does	support	memory	interleaving.	165.
Paper	Name:	Computer	Organization	and	Architecture	UNIT	10	MULTIPROCESSORS	10.1	Characteristics	of	multiprocessors	10.2	Interconnection	structure	10.2.1	Time-shared	common	bus	10.2.2	Multi-port	memory	10.2.3	Crossbar	switch	10.2.4	Multistage	switching	network	10.2.5	Hypercube	interconnection	10.3	Inter	processor	arbitration	10.4
Cache	coherence	10.1	Introduction	to	MULTIPROCESSORS	Characteristics	of	Multiprocessors:	A	multiprocessors	system	is	an	interconnection	of	two	or	more	CPUs	with	memory	and	input-output	equipment.	The	term	“processor”	in	multiprocessor	can	mean	either	a	central	processing	unit	(CPU)	or	an	input-output	processor	(IOP).	Computers	are
interconnected	with	each	other	by	means	of	communication	lines	to	form	a	computer	network.	The	network	consists	of	several	autonomous	computers	that	may	or	may	not	communicate	with	each	other.	A	multiprocessor	system	is	controlled	by	one	operating	system	that	provides	interaction	between	processors	and	all	the	components	of	the	system
cooperate	in	the	solution	of	a	problem.	Multiprocessing	improves	the	reliability	of	the	system	so	that	a	failure	or	error	in	one	part	has	a	limited	effect	on	the	rest	of	the	system.	If	a	fault	causes	one	processor	to	fail,	a	second	processor	can	be	assigned	to	perform	the	functions	of	the	disabled	processor.	The	system	as	a	whole	can	continue	to	function
correctly	with	perhaps	some	loss	in	efficiency.	The	benefit	derived	from	a	multiprocessors	organization	is	an	improved	system	performance.	The	system	derives	its	high	performance	from	the	fact	that	computations	can	proceed	in	parallel	in	one	of	two	ways.	1.	Multiple	independent	jobs	can	be	made	to	operate	in	parallel.	2.	A	single	job	can	be
partitioned	into	multiple	parallel	tasks.	10.2.	Interconnection	Structures:	166.	Paper	Name:	Computer	Organization	and	Architecture	The	components	that	form	a	multiprocessors	system	are	CPUs,	IOPs	connected	to	input-output	devices,	and	a	memory	unit	that	may	be	partitioned	into	a	number	of	separate	modules.	The	interconnection	between	the
components	can	have	different	physical	configurations,	depending	on	the	number	of	transfer	paths	that	are	available	between	the	processors	and	memory	in	a	shared	memory	system	or	among	the	processing	elements	in	a	loosely	coupled	system.	There	are	several	physical	forms	available	for	establishing	an	interconnection	network.	Some	of	these
schemes	are	presented	in	this	section:	1.	Time-shared	common	bus	2.	Multiport	memory	3.	Crossbar	switch	4.	Multistage	switching	network	5.	Hypercube	system	10.2.1	Time-shared	Common	Bus:	A	common-bus	multiprocessor	system	consists	of	a	number	of	processors	connected	through	a	common	path	to	a	memory	unit.	A	time-shared	common	bus
for	five	processors	is	shown	in	fig.	13-1.	Only	one	processor	can	communicate	with	the	memory	or	another	processor	at	any	given	time.	Transfer	operations	are	conducted	by	the	processor	that	is	in	control	of	the	bus	at	the	time.	Any	other	processor	wishing	to	initiate	a	transfer	must	first	determine	the	availability	status	of	the	bus,	and	only	after	the
bus	becomes	available	can	the	processor	address	the	destination	unit	to	initiate	the	transfer.	A	command	is	issued	to	inform	the	destination	unit	what	operation	is	to	be	performed.	The	receiving	unit	recognizes	its	address	in	the	bus	and	responds	to	the	control	signals	from	the	sender,	after	which	the	transfer	is	initiated.	The	system	may	exhibit
transfer	conflicts	since	one	common	bus	is	shared	by	all	processors.	These	conflicts	must	be	resolved	by	incorporating	a	bus	controller	that	establishes	priorities	among	the	requesting	units.	Figure	13-1	Time-shared	common	bus	organization.	Memory	unit	CPU	1	IOP	2CPU	2	CPU	3	IOP	1	167.	Paper	Name:	Computer	Organization	and	Architecture	A
single	common-bus	system	is	restricted	to	one	transfer	at	a	time.	This	means	that	when	one	processor	is	communicating	with	the	memory,	all	other	processors	are	either	busy	with	internal	operations	or	must	be	idle	waiting	for	the	bus.	As	a	consequence,	the	total	overall	transfer	rate	within	the	system	is	limited	by	the	speed	of	the	single	path.	The
processors	in	the	system	can	be	kept	busy	more	often	through	the	implementation	of	two	or	more	independent	buses	to	permit	multiple	simultaneous	bus	transfers.	However,	this	increases	the	system	cost	and	complexity.	A	more	economical	implementation	of	a	dual	bus	structure	is	depicted	in	Fig.	Here	we	have	a	number	of	local	buses	each
connected	to	its	own	local	memory	and	to	one	or	more	processors.	Each	local	bus	may	be	connected	to	a	CPU,	an	IOP,	or	any	combination	of	processors.	A	system	bus	controller	links	each	local	bus	to	a	common	system	bus.	The	I/O	devices	connected	to	the	local	IOP,	as	well	as	the	local	memory,	are	available	to	the	local	processor.	The	memory
connected	to	the	common	system	bus	is	shared	by	all	processors.	If	an	IOP	is	connected	directly	to	the	system	bus,	the	I/O	devices	attached	to	it	may	be	designed	as	a	cache	memory	attached	to	the	CPU	(see	Sec.	12-6).	In	this	way,	the	average	access	time	of	the	local	memory	can	be	made	to	approach	the	cycle	time	of	the	CPU	to	which	it	is	attached.
System	bus	controller	CPU	IOP	Local	memoryCommon	share	memory	System	bus	controller	CPU	IOP	Local	memory	System	bus	controller	CPU	Local	memory	Local	Bus	Local	Bus	Local	Bus	System	Bus	168.	Paper	Name:	Computer	Organization	and	Architecture	10.2.2	Multi-port	Memory:	A	multiport	memory	system	employs	separate	buses	between
each	memory	module	and	each	CPU.	This	is	shown	in	Fig.	13-3	for	four	CPUs	and	four	memory	modules	(MMs).	Each	processor	bus	is	connected	to	each	memory	module.	A	processor	bus	consists	of	the	address,	data	and	control	lines	required	to	communicate	with	memory.	The	memory	module	is	said	to	have	four	ports	and	each	port	accommodates
one	of	the	buses.	The	module	must	have	internal	control	logic	to	determine	which	port	will	have	access	to	memory	at	any	given	time.	Memory	access	conflicts	are	resolved	by	assigning	fixed	priorities	to	each	memory	port.	The	priority	for	memory	access	associated	with	each	processor	may	be	established	by	the	physical	port	position	that	its	bus
occupies	in	each	module.	Thus	CPU	1	will	have	priority	over	CPU	2,	CPU	2	will	have	priority	over	CPU	3,	and	CPU	4	will	have	the	lowest	priority.	The	advantage	of	the	multiport	memory	organization	is	the	high	transfer	rate	that	can	be	achieved	because	of	the	multiple	paths	between	processors	and	memory.	The	disadvantage	is	that	it	requires
expensive	memory	control	logic	and	a	large	number	of	cables	and	connectors.	As	a	consequence,	this	interconnection	structure	is	usually	appropriate	for	systems	with	a	small	number	of	processors.	CPU	1	MM	1	MM	2	MM	3	MM	4	CPU	2	CPU	3	CPU	4	Memory	Modules	169.	Paper	Name:	Computer	Organization	and	Architecture	Figure	13-3	Multiport
memory	organization.	10.2.3	Crossbar	Switch	The	crossbar	switch	organization	consists	of	a	number	of	cross	prints	that	are	placed	at	intersections	between	processor	buses	and	memory	module	paths.	Figure	shows	a	crossbar	switch	interconnection	between	four	CPUs	and	four	memory	modules.	The	small	square	in	each	cross	point	is	a	switch	that
determines	the	path	from	a	processor	to	a	memory	module.	Each	switch	point	has	control	logic	to	set	up	the	transfer	path	between	a	processor	and	memory.	It	examines	the	address	that	is	placed	in	the	bus	to	determine	whether	its	particular	module	is	being	addressed.	It	also	resolves	multiple	requests	for	access	to	the	same	memory	module	on	a
predetermined	priority	basis.	Figure	shows	the	functional	design	of	a	crossbar	switch	connected	to	one	memory	module.	The	circuit	consists	of	multiplexes	that	select	the	data,	address,	and	control	from	one	CPU	for	communication	with	the	memory	module.	Priority	levels	are	established	by	the	arbitration	logic	to	select	one	CPU	when	two	or	more
CPUs	attempt	to	access	the	same	memory.	The	multiplexes	are	controlled	with	the	binary	code	that	is	generated	by	a	priority	encoder	within	the	arbitration	logic.	A	crossbar	switch	organization	supports	simultaneous	transfers	from	all	memory	modules	because	there	is	a	separate	path	associated	with	each	module.	However,	the	hardware	required	to
implement	the	switch	could	be	quite	large	and	complex.	MM	1	MM	2	MM	3	MM	4	CPU	1	CPU	2	CPU	3	Memory	Modules	170.	Paper	Name:	Computer	Organization	and	Architecture	Figure	13-4	Crossbar	Switch	Figure	Block	diagram	of	crossbar	switch	10.2.4	Multistage	Switching	Network:	The	basic	component	of	a	multistage	network	is	a	two-input,
two-output	interchange	switch.	As	shown	in	fig.	the	2	X	2	switch	has	two	inputs,	labeled	A	and	B,	and	two	outputs,	labeled	0	and	1.	There	are	control	signals	(not	shown)	associated	with	the	switch	that	establish	the	interconnection	between	the	input	and	output	terminals.	The	switch	has	the	capability	of	connecting	input	A	to	either	of	the	outputs.
Terminal	B	of	the	switch	behaves	in	a	similar	fashion.	The	switch	also	has	the	capability	to	arbitrate	between	conflicting	requests.	If	inputs	A	and	B	both	request	the	same	output	terminal,	only	one	of	them	will	be	connected;	the	other	will	be	blocked.	Using	the	2	X	2	switch	as	a	building	block,	it	is	possible	to	build	a	multistage	network	to	control	the
communication	between	a	number	of	source	and	destinations.	Memory	Module	Data	Address	Read/Write	Memory	Enabled	Multiplexes	and	arbitration	logic	Data,	address,	and	control	from	CPU	1	Data,	address,	and	control	from	CPU	2	Data,	address,	and	control	from	CPU	3	Data,	address,	and	control	from	CPU	4	171.	Paper	Name:	Computer
Organization	and	Architecture	000	001	0	1	0	1	010	011	100	101	0	1	110	111	0	1	P1	P2	0	1	0	1	To	see	how	this	is	done,	consider	the	binary	tree	shown	Fig.	13-7.	The	two	processors	P1	and	P2	are	connected	through	switches	to	eight	memory	modules	marked	in	binary	from	000	through	111.	The	path	from	source	to	a	destination	is	determined	from
the	binary	bits	of	the	destination	number.	The	first	bit	of	the	destination	number	determines	the	switch	output	in	the	first	level.	The	second	bit	specifies	the	output	of	the	switch	in	the	second	level,	and	third	bit	specifies	the	output	of	the	switch	in	the	third	level.	For	example,	to	connect	P1	to	memory	101,	it	is	necessary	to	form	a	path	from	P1	to
output	1	in	the	first	level	switch,	output	0	in	the	second-level	switch,	and	output	1	in	the	third-level	switch.	It	is	clear	that	either	P1	or	P2	can	be	connected	to	any	one	of	the	eight	memories.	Certain	request	patterns,	however,	cannot	be	satisfied	simultaneously.	For	example,	if	P1	is	connected	to	one	of	the	destinations	000	through	011,P2	can	be
connected	to	only	one	of	the	destinations	100	through	111.	Many	different	topologies	have	been	proposed	for	multistage	switching	networks	to	control	processor-memory	communication	in	a	tightly	coupled	multiprocessor	system	or	to	control	the	communication	between	the	processing	elements	in	a	loosely	coupled	system.	One	such	topology	is	the
omega-switching	network	shown	in	Fig.	13-8.	In	this	configuration,	there	is	exactly	one	path	from	each	source	to	any	particular	destination.	Some	request	patterns,	however,	cannot	be	connected	simultaneously.	For	example,	any	two	sources	cannot	be	connected	simultaneously	to	destinations	000	and	001.	Figure	Operation	of	2	X	2	interchange
switch.	Figure	Binary	tree	with	2	X	2	switches.	A	B	0	1	A	B	0	1	A	connected	to	0	A	connected	to	1	A	B	0	1	B	connected	to	0	0	1	B	A	B	connected	to	1	172.	Paper	Name:	Computer	Organization	and	Architecture	A	particular	request	is	initiated	in	the	switching	network	by	the	source,	which	sends	a	3-	bit	pattern	representing	the	destination	number.	As
the	binary	pattern	moves	through	the	network,	each	level	examines	a	different	bit	to	determine	the	2	X	2	switch	setting.	Level	1	inspects	the	most	significant	bit,	level	2	inspects	the	middle	bit,	and	level	3	inspects	the	least	significant	bit.	When	the	request	arrives	on	either	input	of	the	2	X	2	switch,	it	is	routed	to	the	upper	output	if	the	specified	bit	is
0	or	to	the	lower	output	if	the	bit	is	1.	In	a	tightly	coupled	multiprocessor	system,	the	source	is	a	processor	and	the	destination	is	a	memory	module.	The	first	pass	through	the	network	sets	up	the	path.	Succeeding	passes	are	used	to	transfer	the	address	into	memory	and	then	transfer	the	data	in	either	direction,	depending	on	whether	the	request	is	a
read	or	a	write.	In	a	loosely	coupled	multiprocessor	system,	both	the	source	and	destination	are	processing	elements.	After	the	path	is	established,	the	source	processor	transfers	a	message	to	the	destination	processor.	10.2.5	Hypercube	Interconnection	0	1	4	2	3	5	6	7	000	001	010	011	100	101	110	111	173.	Paper	Name:	Computer	Organization	and
Architecture	The	hypercube	or	binary	n	–	cube	multiprocessor	structure	is	a	loosely	coupled	system	composed	of	N	=	2n	processor	interconnected	in	an	n-	dimensional	binary	cube.	Each	processor	forms	a	node	of	the	cube.	Although	it	is	customary	to	refer	to	each	node	as	having	a	processor,	in	effect	it	contains	not	only	a	CPU	but	also	local	memory
and	I/O	interface.	Each	processor	has	direct	communication	paths	to	n	other	neighbor	processors.	These	paths	correspond	to	the	edges	of	the	cube.	There	are	2n	distinct	n-	bit	binary	addresses	that	can	be	assigned	to	the	processors.	Each	processor	address	differs	from	that	of	each	of	its	n	neighbors	by	exactly	one	bit	position.	Figure	13-9	shows	the
hypercube	structure	for	n	=	1,2,	and	3.	A	one-cube	structure	has	n	=	1	and	2”	=	2.	It	contains	two	processor	interconnected	by	a	single	path.	A	two-cube	structure	has	n=	2	and	2”	=	4.	It	contains	four	nodes	interconnected	as	a	square.	A	three-	cube	structure	has	eight	nodes	interconnected	as	a	cube.	An	n	–	cube	structure	has	2”	nodes	with	a
processor	residing	in	each	node.	Each	node	is	assigned	a	binary	address	in	such	a	way	that	the	addresses	of	two	neighbors	differ	in	exactly	one	bit	position.	For	example,	the	three	neighbors	of	the	node	with	address	100	in	a	three	–	cube	structure	are	000,	110,and	101	each	of	these	binary	numbers	differs	from	address	100	by	one	bit	value.	Routing
message	through	an	n-cube	structure	may	take	from	one	to	n	links	from	a	source	node	to	a	destination	node.	For	example,	in	a	three-	cube	structure,	node	to	a	destination	node.	For	example,	in	a	three-	cube	structure,	node	000	can	communicate	directly	with	node	001.	It	must	cross	at	least	two	links	to	communicate	with	011	(from	000	to	001	to	011
or	from	000	to	010	to	011).	It	is	necessary	to	go	through	at	least	three	links	to	communicate	from	node	000	to	node	111.	A	routing	procedure	can	be	developed	by	computing	the	exclusive	–OR	of	the	source	node	address	with	the	destination	node	address.	The	resulting	binary	value	will	have	1	bits	corresponding	to	the	axes	on	which	the	two	nodes
differ.	The	message	is	then	sent	along	any	one	of	the	axes.	For	example,	in	a	three-	cube	structure,	a	message	at	010	going	to	001	produces	an	exclusive-	OR	of	the	two-address	equal	to	011.	The	message	can	be	sent	along	the	second	axis	to	000	and	then	through	the	third	axis	to	001.	0	1	00	01	00	00	010	111	110	011	00	1	One-cube	Two-cube	Three-
cube	174.	Paper	Name:	Computer	Organization	and	Architecture	A	representative	of	the	hypercube	architecture	is	the	Intel	Ipsc	computer	complex.	It	consists	of	128	(n	=	7)	microcomputers	connected	through	communication	channels.	Each	node	consists	of	CPU,	a	floating-point	processor,	local	memory,	and	serial	communication	interface	units.	The
individual	nodes	operate	independently	on	data	stored	in	local	memory	according	to	resident	programs.	The	data	and	programs	to	each	node	come	through	a	message-	passing	system	from	other	nodes	or	from	a	cube	manager.	Application	program	are	developed	and	complied	on	the	cube	manager	and	then	download	to	the	individual	nodes.
Computations	are	distributed	through	the	system	and	executed	concurrently.	10.3	Interprocessor	Arbitration	Computer	systems	contain	a	number	of	buses	at	various	levels	to	facilitate	the	transfer	of	information	between	components.	The	CPU	contains	a	number	of	internal	buses	for	transferring	information	between	processor	registers	and	ALU.	A
memory	bus	consists	of	lines	for	transferring	data,	address,	and	read/write	information.	An	I/O	bus	is	used	to	transfer	information	to	and	from	input	and	output	devices.	A	bus	that	connects	major	components	in	a	multiprocessor	system,	such	as	CPUs,	IOPs,	and	memory,	is	called	a	system	bus.	The	physical	circuits	of	a	system	bus	are	contained	in	a
number	of	identical	printed	circuit	boards.	Each	board	in	the	system	belongs	to	a	particular	module.	The	board	consists	to	circuits	connected	in	parallel	through	connectors.	Each	pin	of	each	circuit	connector	is	connected	by	a	wire	to	the	corresponding	pin	of	all	other	connectors	in	other	boards.	Thus	any	board	can	be	plugged	into	a	slot	in	the	back
plane	that	forms	the	system	bus.	The	processors	in	a	shared	memory	multiprocessor	system	request	access	to	common	memory	or	other	common	resources	through	the	system	bus.	If	no	other	processor	is	currently	utilization	the	bus,	the	requesting	processor	may	be	granted	access	immediately.	However,	the	requesting	processor	must	wait	if
another	processor	is	currently	utilizing	the	system	bus.	Furthermore,	other	processors	may	request	the	system	bus	at	the	same	time.	Arbitration	must	then	be	performed	to	resolve	this	multiple	contention	for	the	shared	resources.	The	arbitration	logic	would	be	part	of	the	system	bus	controller	placed	between	the	local	bus	and	the	system	bus	as
shown	in	fig.	13	–	2.	10.4	Cache	Coherence	000	000	100	101	175.	Paper	Name:	Computer	Organization	and	Architecture	The	primary	advantage	of	cache	is	its	ability	to	reduce	the	average	access	time	in	uniprocessors.	When	the	processor	finds	a	word	in	cache	during	a	read	operation,	the	main	memory	is	not	involved	in	the	transfer.	If	the	operation
is	to	write,	there	are	two	commonly	used	procedures	to	update	memory.	In	the	write	–	through	policy,	both	cache	and	main	memory	are	updated	with	every	write	operation.	In	the	write-back	policy,	only	the	cache	is	updated	and	the	location	is	marked	so	that	it	can	be	copied	later	into	main	memory.	In	a	shared	memory	multiprocessor	system,	all	the
processors	share	a	common	memory.	In	addition,	each	processor	may	have	a	local	memory,	part	or	all	of	which	may	be	a	cache.	The	compelling	reason	for	having	separate	caches	for	each	processor	is	to	reduce	the	average	access	time	in	each	processor.	The	same	information	may	reside	in	a	number	of	copies	in	some	caches	and	main	memory.	To
ensure	the	ability	of	the	system	to	execute	memory	operations	correctly,	the	multiple	copies	must	be	kept	identical.	This	requirement	imposes	a	cache	coherence	problem.	A	memory	scheme	is	coherent	if	the	value	returned	on	a	load	instruction	is	always	the	value	given	by	the	cache	coherence	problem,	caching	cannot	be	used	in	bus	–	oriented
multiprocessors	with	two	or	more	processors.	Conditions	for	incoherence	Cache	coherence	problems	exist	in	multiprocessors	with	private	caches	because	of	the	need	to	share	writ	able	data.	Read	–	only	data	can	safely	be	replicated	without	cache	coherence	enforcement	mechanisms.	To	illustrate	the	problem	consider	the	three	–	processor
configuration	with	private	caches	shown	in	Fig.	13	–	12.	Sometime	during	the	operation	an	element	X	from	main	memory	is	loaded	into	the	three	processors,	P1,	P2	and	P3.As	a	consequence,	it	is	also	copied	into	the	private	caches	of	the	three	processors.	For	simplicity,	we	assume	as	that	X	contains	the	value	of	52.	The	load	on	X	to	the	three
processors	results	in	consistent	copied	in	the	caches	and	main	memory.	If	one	of	the	processor	performs	a	store	to	X,	the	copies	of	X	in	the	caches	become	inconsistent.	A	load	by	the	other	processors	will	not	return	the	latest	value.	Depending	on	the	memory	update	policy	used	in	the	cache,	the	main	memory	may	also	be	inconsistent	with	respect	to
the	cache.	This	is	shown	in	fig.	13-13.	A	store	to	X	(of	the	value	of	120)	into	the	cache	of	processor	P1	updates	memory	to	the	new	value	in	a	write	–	through	policy.	A	write-	through	policy	maintains	consistency	between	memory	and	the	originating	cache,	but	the	other	caches	are	inconsistent	since	they	still	hold	the	old	value.	In	a	write	–	back	policy,
main	memory	is	not	updated	at	the	time	of	the	store.	The	copies	in	the	other	two	caches	and	main	memory	is	inconsistent.	Memory	is	updated	eventually	when	the	modified	data	in	the	cache	are	copied	back	into	memory.	Another	configuration	that	may	cause	consistency	problems	is	a	direct	memory	access	(DMA)	activity	in	conjunction	with	an	IOP
connected	to	the	system	bus.	In	the	case	of	input,	the	DMA	may	modify	locations	in	main	memory	that	also	reside	in	cache	without	updating	the	cache.	During	a	DMA	output,	memory	locations	may	be	read	176.	Paper	Name:	Computer	Organization	and	Architecture	before	they	are	updated	from	the	cache	when	using	the	write	back	policy.	I/O	–	based
memory	incoherence	can	be	over-	come	by	making	the	IOP	a	participant	in	the	cache	coherent	solution	that	is	adopted	in	the	system.	Solutions	to	the	Cache	Coherence	Problem	Various	schemes	have	been	proposed	to	solve	the	cache	coherence	problem	in	shared	memory	multiprocessors.	We	discuss	some	of	these	schemes	briefly	here.	See
references	3	and	10	fro	more	detailed	discussions.	A	simple	scheme	is	to	disallow	private	caches	for	each	processor	and	have	a	shared	cache	memory	associated	with	main	memory.	Every	data	access	is	made	to	the	shared	cache.	This	method	violates	the	principle	of	closeness	of	CPU	to	cache	and	increases	the	average	memory	access	time.	In	effects,
this	scheme	solves	the	problem	by	avoiding	it.	For	performance	considerations	it	is	desirable	to	attach	as	private	cache	to	each	processor.	One	scheme	that	has	been	used	allows	only	non-shared	and	read	only	data	to	be	stored	in	caches.	Such	items	are	called	cacheable.	Shared	writable	data	are	non-	cacheable.	The	compiler	must	tag	data	as	either
cacheable	or	non-cacheable,	and	the	system	hardware	makes	sure	that	only	cacheable	data	are	stored	in	caches.	The	non-	cacheable	data	remain	memory.	This	method	restricts	the	type	of	data	stored	in	caches	and	introduces	an	extra	software	overhead	that	may	degrade	performance.	A	scheme	that	allows	writable	data	to	exist	in	at	least	one	cache
is	a	method	that	employs	a	centralized	global	table	in	its	compiler.	The	status	of	memory	blocks	is	stored	in	the	central	global	table.	Each	block	is	identified	read-only	(RO)	or	read	and	write	(RW).	All	caches	can	have	copies	of	block	identified	as	RO.	Only	one	cache	can	have	a	copy	of	an	RW	block.	Thus	if	the	data	are	updated	in	the	cache	with	an	RW
block,	the	other	caches	are	not	affected	because	they	do	not	have	a	copy	of	this	block.	The	cache	coherence	problem	can	be	solved	by	means	of	a	combination	of	software	and	hardware	or	by	means	of	hardware-only	schemes.	The	two	methods	mentioned	previously	use	software-based	procedures	that	require	the	ability	to	tag	information	in	order	to
disable	caching	of	shared	writable	data.	Hardware-only	solutions	are	handled	by	the	hardware	automatically	and	have	the	advantage	of	higher	speed	and	program	transparency.	In	the	hardware	solution,	the	cache	controller	is	specially	designed	to	allow	it	to	monitor	all	bus	requests	from	CPUs	and	IOPs.	All	caches	attached	to	the	bus	constantly
monitor	the	network	for	possible	write	operations.	Depending	on	the	method	used,	they	must	then	either	update	or	invalidate	their	own	cache	copies	when	a	match	is	detected.	The	bus	controller	that	monitors	this	action	is	referred	to	as	a	snoopy	cache	controller.	This	is	basically	a	hardware	unit	designed	to	maintain	a	bus-watching	mechanism	over
all	the	caches	attached	to	the	bus.	177.	Paper	Name:	Computer	Organization	and	Architecture	Various	schemes	have	been	proposed	to	solve	the	cache	coherence	problem	by	means	of	snoopy	cache	protocol.	The	simplest	method	is	to	adopt	write-through	policy	and	use	the	following	procedure.	All	the	snoopy	controllers	watch	the	bus	for	memory
store	operations.	When	a	word	in	a	cache	is	updated	by	writing	into	it,	the	corresponding	location	in	main	memory	is	also	updated.	The	local	snoopy	controllers	in	all	other	caches	check	the	memory	to	determine	if	they	have	a	copy	of	the	word	that	has	been	overwritten.	If	a	copy	already	exists	in	a	remote	cache,	that	location	is	marked	invalid.
Because	all	caches	snoop	on	all	bus	writes,	whenever	a	word	is	written,	the	net	effect	is	to	update	it	in	the	original	cache	and	main	memory	and	remove	it	from	all	other	caches.	If	al	some	future	time	a	processor	accesses	the	invalid	item	from	its	cache,	the	response	is	equivalent	to	a	cache	miss,	and	the	updated	item	is	transferred	from	main	memory.
In	this	way,	inconsistent	versions	are	prevented.	X	=	52	X	=	52	X	=	52	X	=	52	P1	P3P2	Caches	Processors	Bus	Main	Memory	178.	Paper	Name:	Computer	Organization	and	Architecture	Figure	Cache	configurations	after	a	store	to	X	by	processor	P1.	(a)	With	write-through	cache	policy	X	=120	X	=	120	X	=	52	X	=	52	P1	P3P2	Caches	Processors	Bus
Main	Memory	X	=	52	X	=	120	X	=	52	X	=	52	P1	P3P2	Caches	Processors	Bus	Main	Memory


