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Show	Mobile	Notice	Show	All	Notes	Hide	All	Notes	Mobile	Notice	You	appear	to	be	on	a	device	with	a	"narrow"	screen	width	(i.e.	you	are	probably	on	a	mobile	phone).	Due	to	the	nature	of	the	mathematics	on	this	site	it	is	best	viewed	in	landscape	mode.	If	your	device	is	not	in	landscape	mode	many	of	the	equations	will	run	off	the	side	of	your	device
(you	should	be	able	to	scroll/swipe	to	see	them)	and	some	of	the	menu	items	will	be	cut	off	due	to	the	narrow	screen	width.	It’s	now	time	to	start	thinking	about	how	to	solve	nonhomogeneous	differential	equations.	A	second	order,	linear	nonhomogeneous	differential	equation	is	\[\begin{equation}y''	+	p\left(	t	\right)y'	+	q\left(	t	\right)y	=	g\left(	t
\right)\label{eq:eq1}\end{equation}\]	where	\(g(t)\)	is	a	non-zero	function.	Note	that	we	didn’t	go	with	constant	coefficients	here	because	everything	that	we’re	going	to	do	in	this	section	doesn’t	require	it.	Also,	we’re	using	a	coefficient	of	1	on	the	second	derivative	just	to	make	some	of	the	work	a	little	easier	to	write	down.	It	is	not	required	to	be	a	1.
Before	talking	about	how	to	solve	one	of	these	we	need	to	get	some	basics	out	of	the	way,	which	is	the	point	of	this	section.	First,	we	will	call	\[\begin{equation}y''	+	p\left(	t	\right)y'	+	q\left(	t	\right)y	=	0\label{eq:eq2}\end{equation}\]	the	associated	homogeneous	differential	equation	to	\(\eqref{eq:eq1}\).	Now,	let’s	take	a	look	at	the	following
theorem.	Theorem	Suppose	that	\(Y_{1}(t)\)	and	\(Y_{2}(t)\)	are	two	solutions	to	\(\eqref{eq:eq1}\)	and	that	\(y_{1}(t)\)	and	\(y_{2}(t)\)	are	a	fundamental	set	of	solutions	to	the	associated	homogeneous	differential	equation	\(\eqref{eq:eq2}\)	then,	\[{Y_1}\left(	t	\right)	-	{Y_2}\left(	t	\right)\]	is	a	solution	to	\(\eqref{eq:eq2}\)	and	it	can	be	written	as	\
[{Y_1}\left(	t	\right)	-	{Y_2}\left(	t	\right)	=	{c_1}{y_1}\left(	t	\right)	+	{c_2}{y_2}\left(	t	\right)\]	Note	the	notation	used	here.	Capital	letters	referred	to	solutions	to	\(\eqref{eq:eq1}\)	while	lower	case	letters	referred	to	solutions	to	\(\eqref{eq:eq2}\).	This	is	a	fairly	common	convention	when	dealing	with	nonhomogeneous	differential	equations.	This
theorem	is	easy	enough	to	prove	so	let’s	do	that.	To	prove	that	\(Y_{1}(t)	-	Y_{2}(t)\)	is	a	solution	to	\(\eqref{eq:eq2}\)	all	we	need	to	do	is	plug	this	into	the	differential	equation	and	check	it.	\[\begin{align*}{\left(	{{Y_1}	-	{Y_2}}	\right)^{\prime	\prime	}}	+	p\left(	t	\right){\left(	{{Y_1}	-	{Y_2}}	\right)^\prime	}	+	q\left(	t	\right)\left(	{{Y_1}	-
{Y_2}}	\right)	&	=	0\\	{Y_1}^{\prime	\prime	}	+	p\left(	t	\right){Y_1}^\prime	+	q\left(	t	\right){Y_1}	-	\left(	{{Y_2}^{\prime	\prime	}	+	p\left(	t	\right){Y_2}^\prime	+	q\left(	t	\right){Y_2}}	\right)	&	=	0\\	g\left(	t	\right)	-	g\left(	t	\right)	&	=	0\\	0	&	=	0\end{align*}\]	We	used	the	fact	that	\(Y_{1}(t)\)	and	\(Y_{2}(t)\)	are	two	solutions	to	\
(\eqref{eq:eq1}\)	in	the	third	step.	Because	they	are	solutions	to	\(\eqref{eq:eq1}\)	we	know	that	\[\begin{align*}{Y_1}^{\prime	\prime	}	+	p\left(	t	\right){Y_1}^\prime	+	q\left(	t	\right){Y_1}	&	=	g\left(	t	\right)\\	{Y_2}^{\prime	\prime	}	+	p\left(	t	\right){Y_2}^\prime	+	q\left(	t	\right){Y_2}	&	=	g\left(	t	\right)\end{align*}\]	So,	we	were	able	to
prove	that	the	difference	of	the	two	solutions	is	a	solution	to	\(\eqref{eq:eq2}\).	Proving	that	\[{Y_1}\left(	t	\right)	-	{Y_2}\left(	t	\right)	=	{c_1}{y_1}\left(	t	\right)	+	{c_2}{y_2}\left(	t	\right)\]	is	even	easier.	Since	\(y_{1}(t)\)	and	\(y_{2}(t)\)	are	a	fundamental	set	of	solutions	to	\(\eqref{eq:eq2}\)	we	know	that	they	form	a	general	solution	and	so	any
solution	to	\(\eqref{eq:eq2}\)	can	be	written	in	the	form	\[y\left(	t	\right)	=	{c_1}{y_1}\left(	t	\right)	+	{c_2}{y_2}\left(	t	\right)\]	Well,	\(Y_{1}(t)	-	Y_{2}(t)\)	is	a	solution	to	\(\eqref{eq:eq2}\),	as	we’ve	shown	above,	therefore	it	can	be	written	as	\[{Y_1}\left(	t	\right)	-	{Y_2}\left(	t	\right)	=	{c_1}{y_1}\left(	t	\right)	+	{c_2}{y_2}\left(	t	\right)\]	So,	what
does	this	theorem	do	for	us?	We	can	use	this	theorem	to	write	down	the	form	of	the	general	solution	to	\(\eqref{eq:eq1}\).	Let’s	suppose	that	\(y(t)\)	is	the	general	solution	to	\(\eqref{eq:eq1}\)	and	that	\(Y_{P}(t)\)	is	any	solution	to	\(\eqref{eq:eq1}\)	that	we	can	get	our	hands	on.	Then	using	the	second	part	of	our	theorem	we	know	that	\[y\left(	t
\right)	-	{Y_P}\left(	t	\right)	=	{c_1}{y_1}\left(	t	\right)	+	{c_2}{y_2}\left(	t	\right)\]	where	\(y_{1}(t)\)	and	\(y_{2}(t)\)	are	a	fundamental	set	of	solutions	for	\(\eqref{eq:eq2}\).	Solving	for	\(y(t)\)	gives,	\[y\left(	t	\right)	=	{c_1}{y_1}\left(	t	\right)	+	{c_2}{y_2}\left(	t	\right)	+	{Y_P}\left(	t	\right)\]	We	will	call	\[{y_c}\left(	t	\right)	=	{c_1}{y_1}\left(	t
\right)	+	{c_2}{y_2}\left(	t	\right)\]	the	complementary	solution	and	\(Y_{P}(t)\)	a	particular	solution.	The	general	solution	to	a	differential	equation	can	then	be	written	as.	\[y\left(	t	\right)	=	{y_c}\left(	t	\right)	+	{Y_P}\left(	t	\right)\]	So,	to	solve	a	nonhomogeneous	differential	equation,	we	will	need	to	solve	the	homogeneous	differential	equation,	\
(\eqref{eq:eq2}\),	which	for	constant	coefficient	differential	equations	is	pretty	easy	to	do,	and	we’ll	need	a	solution	to	\(\eqref{eq:eq1}\).	This	seems	to	be	a	circular	argument.	In	order	to	write	down	a	solution	to	\(\eqref{eq:eq1}\)	we	need	a	solution.	However,	this	isn’t	the	problem	that	it	seems	to	be.	There	are	ways	to	find	a	solution	to	\
(\eqref{eq:eq1}\).	They	just	won’t,	in	general,	be	the	general	solution.	In	fact,	the	next	two	sections	are	devoted	to	exactly	that,	finding	a	particular	solution	to	a	nonhomogeneous	differential	equation.	There	are	two	common	methods	for	finding	particular	solutions	:	Undetermined	Coefficients	and	Variation	of	Parameters.	Both	have	their	advantages
and	disadvantages	as	you	will	see	in	the	next	couple	of	sections.	Learning	Objectives	Write	the	general	solution	to	a	nonhomogeneous	differential	equation.	Solve	a	nonhomogeneous	differential	equation	by	the	method	of	undetermined	coefficients.	Solve	a	nonhomogeneous	differential	equation	by	the	method	of	variation	of	parameters.	Consider	the
nonhomogeneous	linear	differential	equation	[latex]\large{a_2(x)y^{\prime\prime}+a_1(x)y^\prime+a_0(x)y=r(x)}[/latex].	The	associated	homogeneous	equation	[latex]\large{a_2(x)y^{\prime\prime}+a_1(x)y^\prime+a_0(x)y=0}[/latex]	is	called	the	complementary	equation.	We	will	see	that	solving	the	complementary	equation	is	an	important	step
in	solving	a	nonhomogeneous	differential	equation.	A	solution	[latex]y_p(x)[/latex]	of	a	differential	equation	that	contains	no	arbitrary	constants	is	called	a	particular	solution	to	the	equation.	Let	[latex]y_p(x)[/latex]	be	any	particular	solution	to	the	nonhomogeneous	linear	differential	equation
[latex]\large{a_2(x)y^{\prime\prime}+a_1(x)y^\prime+a_0(x)y=r(x)}[/latex].	Also,	let	[latex]c_1y_1(x)+c_2y_2(x)[/latex]	denote	the	general	solution	to	the	complementary	equation.	Then,	the	general	solution	to	the	nonhomogeneous	equation	is	given	by	[latex]\large{y(x)=c_1y_1(x)+c_2y_2(x)+y_p(x)}[/latex].	To	prove	[latex]y(x)[/latex]	is	the	general
solution,	we	must	first	show	that	it	solves	the	differential	equation	and,	second,	that	any	solution	to	the	differential	equation	can	be	written	in	that	form.	Substituting	[latex]y(x)[/latex]	into	the	differential	equation,	we	have	[latex]\begin{aligned}	a_2(x)y^{\prime\prime}+a_1(x)y^\prime+a_0(x)y&=a_2(x)(c_1y_1+c_2y_2+y_p)^{\prime\prime}+a_1(x)
(c_1y_1+c_2y_2+y_p)^\prime+a_0(x)(c_1y_1+c_2y_2+y_p)	\\	&=[a_2(x)(c_1y_1+c_2y_2)^{\prime\prime}+a_1(x)(c_1y_1+c_2y_2)^\prime+a_0(x)(c_1y_1+c_2y_2)]+a_2(x)y_p^{\prime\prime}+a_1(x)y_p^\prime+a_0(x)y_p	\\	&=0+r(x)	\\	&=r(x)	\end{aligned}[/latex].	So	[latex]y(x)[/latex]	is	a	solution.	Now,	let	[latex]z(x)[/latex]	be	any	solution	to
[latex]a_2(x)y^{\prime\prime}+a_1(x)y^\prime+a_0(x)y=r(x)[/latex].	Then	[latex]\begin{aligned}	a_2(x)(z-y_p)^{\prime\prime}+a_1(x)(z-y_p)^\prime+a_0(x)(z-y_p)&=(a_2(x)z^{\prime\prime}+a_1(x)z^\prime+a_0(x)z)-(a_2(x)y_p^{\prime\prime}+a_1(x)y_p^\prime+a_0(x)y_p)	\\	&=r(x)-r(x)	\\	&=0	\end{aligned}[/latex],	so	[latex]z(x)=y_p(x)[/latex]
is	a	solution	to	the	complementary	equation.	But,	[latex]c_1y_1(x)+c_2y_2(x)[/latex]	is	the	general	solution	to	the	complementary	equation,	so	there	are	constants	[latex]c_1[/latex]	and	[latex]c_2[/latex]	such	that	[latex]\large{z(x)=y_p(x)=c_1y_1(x)+c_2y_2(x)}[/latex].	Hence,	we	see	that	[latex]z(x)=c_1y_1(x)+c_2y_2(x)y_p(x)[/latex].
[latex]_\blacksquare[/latex]	Given	that	[latex]y_p(x)=x[/latex]	is	a	particular	solution	to	the	differential	equation	[latex]y^{\prime\prime}+y=x[/latex],	write	the	general	solution	and	check	by	verifying	that	the	solution	satisfies	the	equation.	Given	that	[latex]y_p(x)=-2[/latex]	is	a	particular	solution	to	[latex]y^{\prime\prime}-3y^\prime-4y=8[/latex],
write	the	general	solution	and	verify	that	the	general	solution	satisfies	the	equation.	In	the	preceding	section,	we	learned	how	to	solve	homogeneous	equations	with	constant	coefficients.	Therefore,	for	nonhomogeneous	equations	of	the	form	[latex]ay^{\prime\prime}+by^\prime+cy=r(x)[/latex],	we	already	know	how	to	solve	the	complementary
equation,	and	the	problem	boils	down	to	finding	a	particular	solution	for	the	nonhomogeneous	equation.	We	now	examine	two	techniques	for	this:	the	method	of	undetermined	coefficients	and	the	method	of	variation	of	parameters.	The	method	of	undetermined	coefficients	involves	making	educated	guesses	about	the	form	of	the	particular	solution
based	on	the	form	of	[latex]r(x)[/latex].	When	we	take	derivatives	of	polynomials,	exponential	functions,	sines,	and	cosines,	we	get	polynomials,	exponential	functions,	sines,	and	cosines.	So	when	[latex]r(x)[/latex]	has	one	of	these	forms,	it	is	possible	that	the	solution	to	the	nonhomogeneous	differential	equation	might	take	that	same	form.	Let’s	look	at
some	examples	to	see	how	this	works.	Find	the	general	solution	to	[latex]y^{\prime\prime}+4y^\prime+3y=3x[/latex].	In	Example	“Undetermined	Coefficients	When	[latex]M(N)[/latex]	Is	a	Polynomial”,	notice	that	even	though	[latex]r(x)[/latex]	did	not	include	a	constant	term,	it	was	necessary	for	us	to	include	the	constant	term	in	our	guess.	If	we	had
assumed	a	solution	of	the	form	[latex]y_p=Ax[/latex]	(with	no	constant	term),	we	would	not	have	been	able	to	find	a	solution.	(Verify	this!)	If	the	function	[latex]r(x)[/latex]	is	a	polynomial,	our	guess	for	the	particular	solution	should	be	a	polynomial	of	the	same	degree,	and	it	must	include	all	lower-order	terms,	regardless	of	whether	they	are	present	in
[latex]r(x)[/latex].	Find	the	general	solution	to	[latex]y^{\prime\prime}-y^\prime-2y=2e^{3x}[/latex].	Find	the	general	solution	to	[latex]y^{\prime\prime}-4y^\prime+4y=7\sin	t-\cos	t[/latex].	Watch	the	following	video	to	see	the	worked	solution	to	the	above	Try	It	You	can	view	the	transcript	for	“CP	7.11”	here	(opens	in	new	window).	In	the	previous
checkpoint,	[latex]r(x)[/latex]	included	both	sine	and	cosine	terms.	However,	even	if	[latex]r(x)[/latex]	included	a	sine	term	only	or	a	cosine	term	only,	both	terms	must	be	present	in	the	guess.	The	method	of	undetermined	coefficients	also	works	with	products	of	polynomials,	exponentials,	sines,	and	cosines.	Some	of	the	key	forms	of	[latex]r(x)[/latex]
and	the	associated	guesses	for	[latex]y_p(x)[/latex]	are	summarized	in	Table	7.2	Key	Forms	for	the	Method	of	Undetermined	Coefficients	below.	[latex]r(x)[/latex]	Initial	guess	for	[latex]y_p(x)[/latex]	[latex]k[/latex]	(a	constant)	[latex]A[/latex]	(a	constant)	[latex]ax+b[/latex]	[latex]Ax+B[/latex]	(Note:	The	guess	must	include	both	terms	even	if
[latex]b=0[/latex].)	[latex]ax^{2}+bx+c[/latex]	[latex]Ax^{2}+Bx+C[/latex]	(Note:	The	guess	must	include	all	three	terms	even	if	[latex]b[/latex]	or	[latex]c[/latex]	are	zero.)	Higher-order	polynomials	Polynomial	of	the	same	order	as	[latex]r(x)[/latex]	[latex]ae^{\lambda	x}[/latex]	[latex]Ae^{\lambda	x}[/latex]	[latex]a\cos\beta	x+b\sin\beta	x[/latex]
[latex]A\cos\beta	x+B\sin\beta	x[/latex]	(Note:	The	guess	must	include	both	terms	even	if	either	[latex]a=0[/latex]	or	[latex]b=0[/latex].)	[latex]ae^{\alpha	x}\cos\beta	x+be^{\alpha	x}\sin\beta	x[/latex]	[latex]Ae^{\alpha	x}\cos\beta	x+Be^{\alpha	x}\sin\beta	x[/latex]	[latex](ax^2+bx+c)e^{\lambda	x}[/latex]	[latex](Ax^2+Bx+C)e^{\lambda	x}
[/latex]	[latex](a_2x^2+a_1x+a_0)\cos\beta	x+(b_2x^2+b_1x+b_0)\sin\beta	x[/latex]	[latex](A_2x^2+A_1x+A_0)\cos\beta	x+(B_2x^2+B_1x+B_0)\sin\beta	x[/latex]	[latex](a_2x^2+a_1x+a_0)e^{\alpha	x}\cos\beta	x+(b_2x^2+b_1x+b_0)e^{\alpha	x}\sin\beta	x[/latex]	[latex](A_2x^2+A_1x+A_0)e^{\alpha	x}\cos\beta	x+(B_2x^2+B_1x+B_0)e^{\alpha
x}\sin\beta	x[/latex]	Table	7.2	Key	Forms	for	the	Method	of	Undetermined	Coefficients	Keep	in	mind	that	there	is	a	key	pitfall	to	this	method.	Consider	the	differential	equation	[latex]y^{\prime\prime}+5y^\prime+6y=3e^{-2x}[/latex].	Based	on	the	form	of	[latex]r(x)[/latex],	we	guess	a	particular	solution	of	the	form	[latex]y_p(x)=Ae^{-2x}[/latex].
But	when	we	substitute	this	expression	into	the	differential	equation	to	find	a	value	for	[latex]A[/latex],	we	run	into	a	problem.	We	have	[latex]\large{y_p^\prime(x)=-2Ae^{-2x}}[/latex]	and	[latex]\large{y_p^{\prime\prime}=4Ae^{-2x}}[/latex],	so	we	want	[latex]\begin{aligned}	y^{\prime\prime}+5y^\prime+6y&=3e^{-2x}	\\
4Ae^{-2x}+\left(-2Ae^{-2x}\right)+6Ae^{-2x}&=3e^{-2x}	\\	4Ae^{-2x}-10Ae^{-2x}+6Ae^{-2x}&=3e^{-2x}	\\	0&=3e^{-2x}	\end{aligned}[/latex],	which	is	not	possible.	Looking	closely,	we	see	that,	in	this	case,	the	general	solution	to	the	complementary	equation	is	[latex]c_1e^{-2x}+c_2e^{-2x}[/latex].	The	exponential	function	in	[latex]r(x)
[/latex]	is	actually	a	solution	to	the	complementary	equation,	so,	as	we	just	saw,	all	the	terms	on	the	left	side	of	the	equation	cancel	out.	We	can	still	use	the	method	of	undetermined	coefficients	in	this	case,	but	we	have	to	alter	our	guess	by	multiplying	it	by	[latex]x[/latex].	Using	the	new	guess,	[latex]y_p(x)=Ae^{-2x}[/latex],	we	have
[latex]\large{y_p^\prime(x)=A\left(e^{-2x}-2xe^{-2x}\right)}[/latex]	and	[latex]\large{y_p^{\prime\prime}(x)=-4Ae^{-2x}+4Axe^{-2x}}[/latex].	Substitution	gives	[latex]\begin{aligned}	y^{\prime\prime}+5y^\prime+6y&=3e^{-2x}	\\	\left(-4Ae^{-2x}+4Axe^{-2x}\right)+5\left(Ae^{-2x}-2Axe^{-2x}\right)+6Axe^{-2x}&=3e^{-2x}	\\
-4Ae^{-2x}+4Axe^{-2x}-10Axe^{-2x}+6Axe^{-2x}&=3e^{-2x}	\\	Ae^{-2x}&=3e^{-2x}	\end{aligned}[/latex],	So,	[latex]A=3[/latex]	and	[latex]y_p(x)=3xe^{-2x}[/latex].	This	gives	us	the	following	general	solution	[latex]\large{y(x)=c_1e^{-2x}+c_2e^{-2x}+3xe^{-2x}}[/latex].	Note	that	if	[latex]xe^{-2x}[/latex]	were	also	a	solution	to	the
complementary	equation,	we	would	have	to	multiply	by	[latex]x[/latex]	again,	and	we	would	try	[latex]y_p(x)=Ax^2e^{-2x}[/latex].	problem-solving	strategy:	method	of	undetermined	coefficients	Solve	the	complementary	equation	and	write	down	the	general	solution.	Based	on	the	form	of	[latex]r(x)[/latex],	make	an	initial	guess	for	[latex]y_p(x)
[/latex].	Check	whether	any	term	in	the	guess	for	[latex]y_p(x)[/latex]	is	a	solution	to	the	complementary	equation.	If	so,	multiply	the	guess	by	[latex]x[/latex].	Repeat	this	step	until	there	are	no	terms	in	[latex]y_p(x)[/latex]	that	solve	the	complementary	equation.	Substitute	[latex]y_p(x)[/latex]	into	the	differential	equation	and	equate	like	terms	to	find
values	for	the	unknown	coefficients	in	[latex]y_p(x)[/latex]	Add	the	general	solution	to	the	complementary	equation	and	the	particular	solution	you	just	found	to	obtain	the	general	solution	to	the	nonhomogeneous	equation.	Find	the	general	solutions	to	the	following	differential	equations.	[latex]y^{\prime\prime}-9y=-6\cos	3x[/latex]
[latex]x^{\prime\prime}+2x'+x=4e^{-t}[/latex]	[latex]y^{\prime\prime}-2y^\prime+5y=10^{2}-3x-3[/latex]	[latex]y^{\prime\prime}-3y^\prime=-12t[/latex]	Find	the	general	solution	to	the	following	differential	equations.	[latex]y^{\prime\prime}-5y^\prime+4y=3e^x[/latex]	[latex]y^{\prime\prime}+y^\prime-6y=52\cos2t[/latex]	Sometimes,
[latex]r(x)[/latex]	is	not	a	combination	of	polynomials,	exponentials,	or	sines	and	cosines.	When	this	is	the	case,	the	method	of	undetermined	coefficients	does	not	work,	and	we	have	to	use	another	approach	to	find	a	particular	solution	to	the	differential	equation.	We	use	an	approach	called	the	method	of	variation	of	parameters.	To	simplify	our
calculations	a	little,	we	are	going	to	divide	the	differential	equation	through	by	[latex]a[/latex],	so	we	have	a	leading	coefficient	of	1.	Then	the	differential	equation	has	the	form	[latex]y^{\prime\prime}+py^\prime+qy=r(x)[/latex],	where	[latex]p[/latex]	and	[latex]q[/latex]	are	constants.	If	the	general	solution	to	the	complementary	equation	is	given
by	[latex]c_1y_1(x)+c_2y_2(x)[/latex],	we	are	going	to	look	for	a	particular	solution	of	the	form	[latex]y_p(x)=u(x)y_1(x)+v(x)y_2(x)[/latex].	In	this	case,	we	use	the	two	linearly	independent	solutions	to	the	complementary	equation	to	form	our	particular	solution.	However,	we	are	assuming	the	coefficients	are	functions	of	[latex]x[/latex],	rather	than
constants.	We	want	to	find	functions	[latex]u(x)[/latex]	and	[latex]v(x)[/latex]	such	that	[latex]y_p(x)[/latex]	satisfies	the	differential	equation.	We	have	[latex]\begin{aligned}	y_p&=uy_1+vy_2	\\	y_p^\prime&=u^\prime+uy_1^\prime+v^\prime	y_2+vy_2^\prime	\\	y_p^{\prime\prime}&=(u^\prime	y_1+v^\prime	y_2)^\prime+u^\prime
y_1^\prime+uy_1^{\prime\prime}+v^\prime	y_2^\prime+vy_2^{\prime\prime}	\end{aligned}[/latex].	Substituting	into	the	differential	equation,	we	obtain	[latex]\begin{aligned}	y_p^{\prime\prime}+py_p^\prime+qy_p&=[(u^\prime	y_1+v^\prime	y_2)+u^\prime	y_1^\prime+uy_1^{\prime\prime}+v^\prime
y_2^\prime+vy_2^{\prime\prime}]+p[u^\prime	y_1+uy_1^\prime+v^\prime	y_2+vy_2^\prime]+q[uy_1+vy_2]	\\	&=u[y_1^{\prime\prime}+py_1^\prime+qy_1]+v[y_2^{\prime\prime}+py_2^\prime+qy_2]+(u^\prime	y_1+v^\prime	y_2)^\prime+p(u^\prime	y_1+v^\prime	y_2)+(u^\prime	y_1^\prime+v^\prime	y_2^\prime)	\end{aligned}[/latex].
Note	that	[latex]y_1[/latex]	and	[latex]y_2[/latex]	are	solutions	to	the	complementary	equation,	so	the	first	two	terms	are	zero.	Thus,	we	have	[latex](u^\prime	y_1+v^\prime	y_2)^\prime+p(u^\prime	y_1+v^\prime	y_2)+(u^\prime	y_1^\prime+v^\prime	y_2^\prime)=r(x)[/latex].	If	we	simplify	this	equation	by	imposing	the	additional	condition
[latex]u^\prime	y_1+v^\prime	y_2=0[/latex],	the	first	two	terms	are	zero,	and	this	reduces	to	[latex]u^\prime	y_1^\prime+v^\prime	y_2=r(x)[/latex].	So,	with	this	additional	condition,	we	have	a	system	of	two	equations	in	two	unknowns:	[latex]\begin{aligned}	u^\prime	y_1+v^\prime	y_2&=0	\\	u^\prime	y_1^\prime+v^\prime	y_2^\prime&=r(x)
\end{aligned}[/latex].	Solving	this	system	gives	us	[latex]u'[/latex]	and	[latex]v'[/latex],	which	we	can	integrate	to	find	[latex]u[/latex]	and	[latex]v[/latex].	Then,	[latex]y_p(x)=u(x)y_1(x)+v(x)y_2(x)[/latex]	is	a	particular	solution	to	the	differential	equation.	Solving	this	system	of	equations	is	sometimes	challenging,	so	let’s	take	this	opportunity	to	review
Cramer’s	rule,	which	allows	us	to	solve	the	system	of	equations	using	determinants.	The	system	of	equations	[latex]\begin{aligned}	a_1z_1+b_1z_2=r_1	\\	a_2z_1+b_2z_2&=r_2	\end{aligned}[/latex]	has	a	unique	solution	if	and	only	if	the	determinant	of	the	coefficients	is	not	zero.	In	this	case,	the	solution	is	given	by
[latex]z_1=\frac{\begin{vmatrix}r_1&b_1	\\	r_2&b_2\end{vmatrix}}{\begin{vmatrix}a_1&b_1	\\	a_2&b_2\end{vmatrix}}[/latex]	and	[latex]z_2=\frac{\begin{vmatrix}a_1&r_1	\\	a_2&r_2\end{vmatrix}}{\begin{vmatrix}a_1&b_1	\\	a_2&b_2\end{vmatrix}}[/latex].	Use	Cramer’s	rule	to	solve	the	following	system	of	equations.	[latex]\begin{aligned}
x^2z_1+2xz_2&=0	\\	z_1-3x^2z_2&=2x	\end{aligned}[/latex].	Use	Cramer’s	rule	to	solve	the	following	system	of	equations.	[latex]\begin{aligned}	2xz_1-3z_2&=0	\\	x^2z_1+4xz_2&=x+1	\end{aligned}[/latex].	problem-solving	strategy:	method	of	variation	of	parameters	Solve	the	complementary	equation	and	write	down	the	general	solution
[latex]c_1y_1(x)+c_2y_2(x)[/latex].	Use	Cramer’s	rule	or	another	suitable	technique	to	find	functions	[latex]u^\prime(x)[/latex]	and	[latex]v^\prime(x)[/latex]	satisfying	[latex]\begin{aligned}	u^\prime	y_1+v^\prime	y_2&=0	\\	u^\prime	y_1^\prime+v^\prime	y_2^\prime&=r(x)	\end{aligned}[/latex]	Integrate	[latex]u^\prime[/latex]	and
[latex]v^\prime[/latex]	to	find	[latex]u(x)[/latex]	and	[latex]v(x)[/latex].	Then,	[latex]y_p(x)=u(x)y_1(x)+v(x)y_2(x)[/latex]	is	a	particular	solution	to	the	equation.	Add	the	general	solution	to	the	complementary	equation	and	the	particular	solution	found	in	step	3	to	obtain	the	general	solution	to	the	nonhomogeneous	equation.	Find	the	general	solution	to
the	following	differential	equations.	[latex]y^{\prime\prime}-2y^\prime+y=\frac{e^t}{t^2}[/latex]	[latex]y^{\prime\prime}+y=3\sin^2x[/latex]	Find	the	general	solution	to	the	following	differential	equations.	[latex]y^{\prime\prime}+y=\sec	x[/latex]	[latex]x^{\prime\prime}-2x^\prime+x=\frac{e^t}t[/latex]	Watch	the	following	videos	to	see	the
worked	solution	to	the	above	Try	It	You	can	view	the	transcript	for	“CP	7.14a”	here	(opens	in	new	window).	You	can	view	the	transcript	for	“CP	7.14b”	here	(opens	in	new	window).	7.2.1	Write	the	general	solution	to	a	nonhomogeneous	differential	equation.	7.2.2	Solve	a	nonhomogeneous	differential	equation	by	the	method	of	undetermined
coefficients.	7.2.3	Solve	a	nonhomogeneous	differential	equation	by	the	method	of	variation	of	parameters.	In	this	section,	we	examine	how	to	solve	nonhomogeneous	differential	equations.	The	terminology	and	methods	are	different	from	those	we	used	for	homogeneous	equations,	so	let’s	start	by	defining	some	new	terms.	Consider	the
nonhomogeneous	linear	differential	equation	a2(x)y″+a1(x)y′+a0(x)y=r(x).a2(x)y″+a1(x)y′+a0(x)y=r(x).	The	associated	homogeneous	equation	a2(x)y″+a1(x)y′+a0(x)y=0a2(x)y″+a1(x)y′+a0(x)y=0	(7.3)	is	called	the	complementary	equation.	We	will	see	that	solving	the	complementary	equation	is	an	important	step	in	solving	a	nonhomogeneous
differential	equation.	A	solution	yp(x)yp(x)	of	a	differential	equation	that	contains	no	arbitrary	constants	is	called	a	particular	solution	to	the	equation.	Let	yp(x)yp(x)	be	any	particular	solution	to	the	nonhomogeneous	linear	differential	equation	a2(x)y″+a1(x)y′+a0(x)y=r(x).a2(x)y″+a1(x)y′+a0(x)y=r(x).	Also,	let	c1y1(x)+c2y2(x)c1y1(x)+c2y2(x)	denote
the	general	solution	to	the	complementary	equation.	Then,	the	general	solution	to	the	nonhomogeneous	equation	is	given	by	y(x)=c1y1(x)+c2y2(x)+yp(x).y(x)=c1y1(x)+c2y2(x)+yp(x).	To	prove	y(x)y(x)	is	the	general	solution,	we	must	first	show	that	it	solves	the	differential	equation	and,	second,	that	any	solution	to	the	differential	equation	can	be
written	in	that	form.	Substituting	y(x)y(x)	into	the	differential	equation,	we	have	a2(x)y″+a1(x)y′+a0(x)y=a2(x)(c1y1+c2y2+yp)″+a1(x)(c1y1+c2y2+yp)′+a0(x)(c1y1+c2y2+yp)=[a2(x)(c1y1+c2y2)″+a1(x)(c1y1+c2y2)′+a0(x)(c1y1+c2y2)]+a2(x)yp″+a1(x)yp′+a0(x)yp=0+r(x)=r(x).a2(x)y″+a1(x)y′+a0(x)y=a2(x)(c1y1+c2y2+yp)″+a1(x)(c1y1+c2y2+yp)′
+a0(x)(c1y1+c2y2+yp)=[a2(x)(c1y1+c2y2)″+a1(x)(c1y1+c2y2)′+a0(x)(c1y1+c2y2)]+a2(x)yp″+a1(x)yp′+a0(x)yp=0+r(x)=r(x).	So	y(x)y(x)	is	a	solution.	Now,	let	z(x)z(x)	be	any	solution	to	a2(x)y″+a1(x)y′+a0(x)y=r(x).a2(x)y″+a1(x)y′+a0(x)y=r(x).	Then	a2(x)(z−yp)″+a1(x)(z−yp)′+a0(x)(z−yp)=(a2(x)z″+a1(x)z′+a0(x)z)−(a2(x)yp″+a1(x)yp′+a0(x)yp)=r(x)
−r(x)=0,a2(x)(z−yp)″+a1(x)(z−yp)′+a0(x)(z−yp)=(a2(x)z″+a1(x)z′+a0(x)z)−(a2(x)yp″+a1(x)yp′+a0(x)yp)=r(x)−r(x)=0,	so	z(x)−yp(x)z(x)−yp(x)	is	a	solution	to	the	complementary	equation.	But,	c1y1(x)+c2y2(x)c1y1(x)+c2y2(x)	is	the	general	solution	to	the	complementary	equation,	so	there	are	constants	c1c1	and	c2c2	such	that	z(x)
−yp(x)=c1y1(x)+c2y2(x).z(x)−yp(x)=c1y1(x)+c2y2(x).	Hence,	we	see	that	z(x)=c1y1(x)+c2y2(x)+yp(x).z(x)=c1y1(x)+c2y2(x)+yp(x).	□	Given	that	yp(x)=xyp(x)=x	is	a	particular	solution	to	the	differential	equation	y″+y=x,y″+y=x,	write	the	general	solution	and	check	by	verifying	that	the	solution	satisfies	the	equation.	The	complementary	equation	is
y″+y=0,y″+y=0,	which	has	the	general	solution	c1cosx+c2sinx.c1cosx+c2sinx.	So,	the	general	solution	to	the	nonhomogeneous	equation	is	y	(	x	)	=	c	1	cos	x	+	c	2	sin	x	+	x	.	y	(	x	)	=	c	1	cos	x	+	c	2	sin	x	+	x	.	To	verify	that	this	is	a	solution,	substitute	it	into	the	differential	equation.	We	have	y	′	(	x	)	=	−	c	1	sin	x	+	c	2	cos	x	+	1	and	y	″	(	x	)	=	−	c	1	cos
x	−	c	2	sin	x	.	y	′	(	x	)	=	−	c	1	sin	x	+	c	2	cos	x	+	1	and	y	″	(	x	)	=	−	c	1	cos	x	−	c	2	sin	x	.	Then	y	″	(	x	)	+	y	(	x	)	=	−	c	1	cos	x	−	c	2	sin	x	+	c	1	cos	x	+	c	2	sin	x	+	x	=	x	.	y	″	(	x	)	+	y	(	x	)	=	−	c	1	cos	x	−	c	2	sin	x	+	c	1	cos	x	+	c	2	sin	x	+	x	=	x	.	So,	y(x)y(x)	is	a	solution	to	y″+y=x.y″+y=x.	Given	that	yp(x)=−2yp(x)=−2	is	a	particular	solution	to	y″−3y′
−4y=8,y″−3y′−4y=8,	write	the	general	solution	and	verify	that	the	general	solution	satisfies	the	equation.	In	the	preceding	section,	we	learned	how	to	solve	homogeneous	equations	with	constant	coefficients.	Therefore,	for	nonhomogeneous	equations	of	the	form	ay″+by′+cy=r(x),ay″+by′+cy=r(x),	we	already	know	how	to	solve	the	complementary
equation,	and	the	problem	boils	down	to	finding	a	particular	solution	for	the	nonhomogeneous	equation.	We	now	examine	two	techniques	for	this:	the	method	of	undetermined	coefficients	and	the	method	of	variation	of	parameters.	The	method	of	undetermined	coefficients	involves	making	educated	guesses	about	the	form	of	the	particular	solution
based	on	the	form	of	r(x).r(x).	When	we	take	derivatives	of	polynomials,	exponential	functions,	sines,	and	cosines,	we	get	polynomials,	exponential	functions,	sines,	and	cosines.	So	when	r(x)r(x)	has	one	of	these	forms,	it	is	possible	that	the	solution	to	the	nonhomogeneous	differential	equation	might	take	that	same	form.	Let’s	look	at	some	examples	to
see	how	this	works.	Find	the	general	solution	to	y″+4y′+3y=3x.y″+4y′+3y=3x.	The	complementary	equation	is	y″+4y′+3y=0,y″+4y′+3y=0,	with	general	solution	c1e−x+c2e−3x.c1e−x+c2e−3x.	Since	r(x)=3x,r(x)=3x,	the	particular	solution	might	have	the	form	yp(x)=Ax+B.yp(x)=Ax+B.	If	this	is	the	case,	then	we	have	yp′(x)=Ayp′(x)=A	and	yp″
(x)=0.yp″(x)=0.	For	ypyp	to	be	a	solution	to	the	differential	equation,	we	must	find	values	for	AA	and	BB	such	that	y	″	+	4	y	′	+	3	y	=	3	x	0	+	4	(	A	)	+	3	(	A	x	+	B	)	=	3	x	3	A	x	+	(	4	A	+	3	B	)	=	3	x	.	y	″	+	4	y	′	+	3	y	=	3	x	0	+	4	(	A	)	+	3	(	A	x	+	B	)	=	3	x	3	A	x	+	(	4	A	+	3	B	)	=	3	x	.	Setting	coefficients	of	like	terms	equal,	we	have	3	A	=	3	4	A	+	3	B	=	0	.	3
A	=	3	4	A	+	3	B	=	0	.	Then,	A=1A=1	and	B=−43,B=−43,	so	yp(x)=x−43yp(x)=x−43	and	the	general	solution	is	y	(	x	)	=	c	1	e	−	x	+	c	2	e	−3	x	+	x	−	4	3	.	y	(	x	)	=	c	1	e	−	x	+	c	2	e	−3	x	+	x	−	4	3	.	In	Example	7.12,	notice	that	even	though	r(x)r(x)	did	not	include	a	constant	term,	it	was	necessary	for	us	to	include	the	constant	term	in	our	guess.	If	we
had	assumed	a	solution	of	the	form	yp=Axyp=Ax	(with	no	constant	term),	we	would	not	have	been	able	to	find	a	solution.	(Verify	this!)	If	the	function	r(x)r(x)	is	a	polynomial,	our	guess	for	the	particular	solution	should	be	a	polynomial	of	the	same	degree,	and	it	must	include	all	lower-order	terms,	regardless	of	whether	they	are	present	in	r(x).r(x).	Find
the	general	solution	to	y″−y′−2y=2e3x.y″−y′−2y=2e3x.	The	complementary	equation	is	y″−y′−2y=0,y″−y′−2y=0,	with	the	general	solution	c1e−x+c2e2x.c1e−x+c2e2x.	Since	r(x)=2e3x,r(x)=2e3x,	the	particular	solution	might	have	the	form	yp(x)=Ae3x.yp(x)=Ae3x.	Then,	we	have	yp′(x)=3Ae3xyp′(x)=3Ae3x	and	yp″(x)=9Ae3x.yp″(x)=9Ae3x.	For	ypyp
to	be	a	solution	to	the	differential	equation,	we	must	find	a	value	for	AA	such	that	y	″	−	y	′	−	2	y	=	2	e	3	x	9	A	e	3	x	−	3	A	e	3	x	−	2	A	e	3	x	=	2	e	3	x	4	A	e	3	x	=	2	e	3	x	.	y	″	−	y	′	−	2	y	=	2	e	3	x	9	A	e	3	x	−	3	A	e	3	x	−	2	A	e	3	x	=	2	e	3	x	4	A	e	3	x	=	2	e	3	x	.	So,	4A=24A=2	and	A=1/2.A=1/2.	Then,	yp(x)=(12)e3x,yp(x)=(12)e3x,	and	the	general	solution	is	y
(	x	)	=	c	1	e	−	x	+	c	2	e	2	x	+	1	2	e	3	x	.	y	(	x	)	=	c	1	e	−	x	+	c	2	e	2	x	+	1	2	e	3	x	.	Find	the	general	solution	to	y″−4y′+4y=7sint−cost.y″−4y′+4y=7sint−cost.	In	the	previous	checkpoint,	r(x)r(x)	included	both	sine	and	cosine	terms.	However,	even	if	r(x)r(x)	included	a	sine	term	only	or	a	cosine	term	only,	both	terms	must	be	present	in	the	guess.	The
method	of	undetermined	coefficients	also	works	with	products	of	polynomials,	exponentials,	sines,	and	cosines.	Some	of	the	key	forms	of	r(x)r(x)	and	the	associated	guesses	for	yp(x)yp(x)	are	summarized	in	Table	7.2.	r(x)r(x)	Initial	guess	for	yp(x)yp(x)	kk	(a	constant)	AA	(a	constant)	ax+bax+b	Ax+BAx+B	(Note:	The	guess	must	include	both	terms
even	if	b=0.b=0.)	ax2+bx+cax2+bx+c	Ax2+Bx+CAx2+Bx+C	(Note:	The	guess	must	include	all	three	terms	even	if	bb	or	cc	are	zero.)	Higher-order	polynomials	Polynomial	of	the	same	order	as	r(x)r(x)	aeλxaeλx	AeλxAeλx	acosβx+bsinβxacosβx+bsinβx	Acosβx+BsinβxAcosβx+Bsinβx	(Note:	The	guess	must	include	both	terms	even	if	either	a=0a=0	or
b=0.b=0.)	aeαxcosβx+beαxsinβxaeαxcosβx+beαxsinβx	Aeαxcosβx+BeαxsinβxAeαxcosβx+Beαxsinβx	(ax2+bx+c)eλx(ax2+bx+c)eλx	(Ax2+Bx+C)eλx(Ax2+Bx+C)eλx	(a2x2+a1x+a0)cosβx+(b2x2+b1x+b0)sinβx(a2x2+a1x+a0)cosβx+(b2x2+b1x+b0)sinβx	(A2x2+A1x+A0)cosβx+(B2x2+B1x+B0)sinβx(A2x2+A1x+A0)cosβx+(B2x2+B1x+B0)sinβx
(a2x2+a1x+a0)eαxcosβx+(b2x2+b1x+b0)eαxsinβx(a2x2+a1x+a0)eαxcosβx+(b2x2+b1x+b0)eαxsinβx	(A2x2+A1x+A0)eαxcosβx+(B2x2+B1x+B0)eαxsinβx(A2x2+A1x+A0)eαxcosβx+(B2x2+B1x+B0)eαxsinβx	Table	7.2	Key	Forms	for	the	Method	of	Undetermined	Coefficients	Keep	in	mind	that	there	is	a	key	pitfall	to	this	method.	Consider	the
differential	equation	y″+5y′+6y=3e−2x.y″+5y′+6y=3e−2x.	Based	on	the	form	of	r(x),r(x),	we	guess	a	particular	solution	of	the	form	yp(x)=Ae−2x.yp(x)=Ae−2x.	But	when	we	substitute	this	expression	into	the	differential	equation	to	find	a	value	for	A,A,	we	run	into	a	problem.	We	have	yp′(x)=−2Ae−2xyp′(x)=−2Ae−2x	and	yp″=4Ae−2x,yp″=4Ae−2x,
so	we	want	y″+5y′+6y=3e−2x4Ae−2x+5(−2Ae−2x)+6Ae−2x=3e−2x4Ae−2x−10Ae−2x+6Ae−2x=3e−2x0=3e−2x,y″+5y′+6y=3e−2x4Ae−2x+5(−2Ae−2x)+6Ae−2x=3e−2x4Ae−2x−10Ae−2x+6Ae−2x=3e−2x0=3e−2x,	which	is	not	possible.	Looking	closely,	we	see	that,	in	this	case,	the	general	solution	to	the	complementary	equation	is
c1e−2x+c2e−3x.c1e−2x+c2e−3x.	The	exponential	function	in	r(x)r(x)	is	actually	a	solution	to	the	complementary	equation,	so,	as	we	just	saw,	all	the	terms	on	the	left	side	of	the	equation	cancel	out.	We	can	still	use	the	method	of	undetermined	coefficients	in	this	case,	but	we	have	to	alter	our	guess	by	multiplying	it	byx.x.	Using	the	new	guess,
yp(x)=Axe−2x,yp(x)=Axe−2x,	we	have	yp′(x)=A(e−2x−2xe−2x)yp′(x)=A(e−2x−2xe−2x)	and	yp″(x)=−4Ae−2x+4Axe−2x.yp″(x)=−4Ae−2x+4Axe−2x.	Substitution	gives	y″+5y′+6y=3e−2x(−4Ae−2x+4Axe−2x)+5(Ae−2x−2Axe−2x)+6Axe−2x=3e−2x−4Ae−2x+4Axe−2x+5Ae−2x−10Axe−2x+6Axe−2x=3e−2xAe−2x=3e−2x.y″+5y′
+6y=3e−2x(−4Ae−2x+4Axe−2x)+5(Ae−2x−2Axe−2x)+6Axe−2x=3e−2x−4Ae−2x+4Axe−2x+5Ae−2x−10Axe−2x+6Axe−2x=3e−2xAe−2x=3e−2x.	So,	A=3A=3	and	yp(x)=3xe−2x.yp(x)=3xe−2x.	This	gives	us	the	following	general	solution	y(x)=c1e−2x+c2e−3x+3xe−2x.y(x)=c1e−2x+c2e−3x+3xe−2x.	Note	that	if	xe−2xxe−2x	were	also	a	solution
to	the	complementary	equation,	we	would	have	to	multiply	by	xx	again,	and	we	would	try	yp(x)=Ax2e−2x.yp(x)=Ax2e−2x.	Solve	the	complementary	equation	and	write	down	the	general	solution.	Based	on	the	form	of	r(x),r(x),	make	an	initial	guess	for	yp(x).yp(x).	Check	whether	any	term	in	the	guess	for	yp(x)yp(x)	is	a	solution	to	the	complementary
equation.	If	so,	multiply	the	guess	byx.x.	Repeat	this	step	until	there	are	no	terms	in	yp(x)yp(x)	that	solve	the	complementary	equation.	Substitute	yp(x)yp(x)	into	the	differential	equation	and	equate	like	terms	to	find	values	for	the	unknown	coefficients	in	yp(x).yp(x).	Add	the	general	solution	to	the	complementary	equation	and	the	particular	solution
you	just	found	to	obtain	the	general	solution	to	the	nonhomogeneous	equation.	Find	the	general	solutions	to	the	following	differential	equations.	y″−9y=−6cos3xy″−9y=−6cos3x	x″+2x′+x=4e−tx″+2x′+x=4e−t	y″−2y′+5y=10x2−3x−3y″−2y′+5y=10x2−3x−3	y″−3y′=−12ty″−3y′=−12t	The	complementary	equation	is	y″−9y=0,y″−9y=0,	which	has	the
general	solution	c1e3x+c2e−3xc1e3x+c2e−3x	(step	1).	Based	on	the	form	of	r(x)=−6cos3x,r(x)=−6cos3x,	our	initial	guess	for	the	particular	solution	is	yp(x)=Acos3x+Bsin3xyp(x)=Acos3x+Bsin3x	(step	2).	None	of	the	terms	in	yp(x)yp(x)	solve	the	complementary	equation,	so	this	is	a	valid	guess	(step	3).	Now	we	want	to	find	values	for	AA	and	B,B,	so
substitute	ypyp	into	the	differential	equation.	We	have	yp′(x)=−3Asin3x+3Bcos3xandyp″(x)=−9Acos3x−9Bsin3x,yp′(x)=−3Asin3x+3Bcos3xandyp″(x)=−9Acos3x−9Bsin3x,	so	we	want	to	find	values	of	AA	and	BB	such	that	y″−9y=−6cos3x−9Acos3x−9Bsin3x−9(Acos3x+Bsin3x)=−6cos3x−18Acos3x−18Bsin3x=−6cos3x.y″
−9y=−6cos3x−9Acos3x−9Bsin3x−9(Acos3x+Bsin3x)=−6cos3x−18Acos3x−18Bsin3x=−6cos3x.	Therefore,	−18A=−6−18B=0.−18A=−6−18B=0.	This	gives	A=13A=13	and	B=0,B=0,	so	yp(x)=(13)cos3xyp(x)=(13)cos3x	(step	4).	Putting	everything	together,	we	have	the	general	solution	y(x)=c1e3x+c2e−3x+13cos3x.y(x)=c1e3x+c2e−3x+13cos3x.
The	complementary	equation	is	x″+2x′+x=0,x″+2x′+x=0,	which	has	the	general	solution	c1e−t+c2te−tc1e−t+c2te−t	(step	1).	Based	on	the	form	r(t)=4e−t,r(t)=4e−t,	our	initial	guess	for	the	particular	solution	is	xp(t)=Ae−txp(t)=Ae−t	(step	2).	However,	we	see	that	this	guess	solves	the	complementary	equation,	so	we	must	multiply	byt,t,	which	gives
a	new	guess:	xp(t)=Ate−txp(t)=Ate−t	(step	3).	Checking	this	new	guess,	we	see	that	it,	too,	solves	the	complementary	equation,	so	we	must	multiply	by	t	again,	which	gives	xp(t)=At2e−txp(t)=At2e−t	(step	3	again).	Now,	checking	this	guess,	we	see	that	xp(t)xp(t)	does	not	solve	the	complementary	equation,	so	this	is	a	valid	guess	(step	3	yet	again).
We	now	want	to	find	a	value	for	A,A,	so	we	substitute	xpxp	into	the	differential	equation.	We	have	xp(t)=At2e−t,soxp′(t)=2Ate−t−At2e−txp(t)=At2e−t,soxp′(t)=2Ate−t−At2e−t	and	xp″(t)=2Ae−t−2Ate−t−(2Ate−t−At2e−t)=2Ae−t−4Ate−t+At2e−t.xp″(t)=2Ae−t−2Ate−t−(2Ate−t−At2e−t)=2Ae−t−4Ate−t+At2e−t.	Substituting	into	the	differential
equation,	we	want	to	find	a	value	of	AA	so	that	x″+2x′+x=4e−t2Ae−t−4Ate−t+At2e−t+2(2Ate−t−At2e−t)+At2e−t=4e−t2Ae−t=4e−t.x″+2x′+x=4e−t2Ae−t−4Ate−t+At2e−t+2(2Ate−t−At2e−t)+At2e−t=4e−t2Ae−t=4e−t.	This	gives	A=2,A=2,	so	xp(t)=2t2e−txp(t)=2t2e−t	(step	4).	Putting	everything	together,	we	have	the	general	solution
x(t)=c1e−t+c2te−t+2t2e−t.x(t)=c1e−t+c2te−t+2t2e−t.	The	complementary	equation	is	y″−2y′+5y=0,y″−2y′+5y=0,	which	has	the	general	solution	c1excos2x+c2exsin2xc1excos2x+c2exsin2x	(step	1).	Based	on	the	form	r(x)=10x2−3x−3,r(x)=10x2−3x−3,	our	initial	guess	for	the	particular	solution	is	yp(x)=Ax2+Bx+Cyp(x)=Ax2+Bx+C	(step	2).
None	of	the	terms	in	yp(x)yp(x)	solve	the	complementary	equation,	so	this	is	a	valid	guess	(step	3).	We	now	want	to	find	values	for	A,A,	B,B,	and	C,C,	so	we	substitute	ypyp	into	the	differential	equation.	We	have	yp′(x)=2Ax+Byp′(x)=2Ax+B	and	yp″(x)=2A,yp″(x)=2A,	so	we	want	to	find	values	of	A,A,	B,B,	and	CC	such	that	y″−2y′
+5y=10x2−3x−32A−2(2Ax+B)+5(Ax2+Bx+C)=10x2−3x−35Ax2+(5B−4A)x+(5C−2B+2A)=10x2−3x−3.y″−2y′+5y=10x2−3x−32A−2(2Ax+B)+5(Ax2+Bx+C)=10x2−3x−35Ax2+(5B−4A)x+(5C−2B+2A)=10x2−3x−3.	Therefore,	5A=105B−4A=−35C−2B+2A=−3.5A=105B−4A=−35C−2B+2A=−3.	This	gives	A=2,A=2,	B=1,B=1,	and	C=−1,C=−1,	so
yp(x)=2x2+x−1yp(x)=2x2+x−1	(step	4).	Putting	everything	together,	we	have	the	general	solution	y(x)=c1excos2x+c2exsin2x+2x2+x−1.y(x)=c1excos2x+c2exsin2x+2x2+x−1.	The	complementary	equation	is	y″−3y′=0,y″−3y′=0,	which	has	the	general	solution	c1e3t+c2c1e3t+c2	(step	1).	Based	on	the	form	r(t)=−12t,r(t)=−12t,	our	initial	guess	for
the	particular	solution	is	yp(t)=At+Byp(t)=At+B	(step	2).	However,	we	see	that	the	constant	term	in	this	guess	solves	the	complementary	equation,	so	we	must	multiply	by	t,t,	which	gives	a	new	guess:	yp(t)=At2+Btyp(t)=At2+Bt	(step	3).	Checking	this	new	guess,	we	see	that	none	of	the	terms	in	yp(t)yp(t)	solve	the	complementary	equation,	so	this	is
a	valid	guess	(step	3	again).	We	now	want	to	find	values	for	AA	and	B,B,	so	we	substitute	ypyp	into	the	differential	equation.	We	have	yp′(t)=2At+Byp′(t)=2At+B	and	yp″(t)=2A,yp″(t)=2A,	so	we	want	to	find	values	of	AA	and	BB	such	that	y″−3y′=−12t2A−3(2At+B)=−12t−6At+(2A−3B)=−12t.y″−3y′=−12t2A−3(2At+B)=−12t−6At+(2A−3B)=−12t.
Therefore,	−6A=−122A−3B=0.−6A=−122A−3B=0.	This	gives	A=2A=2	and	B=4/3,B=4/3,	so	yp(t)=2t2+(4/3)typ(t)=2t2+(4/3)t	(step	4).	Putting	everything	together,	we	have	the	general	solution	y(t)=c1e3t+c2+2t2+43t.y(t)=c1e3t+c2+2t2+43t.	Find	the	general	solution	to	the	following	differential	equations.	y″−5y′+4y=3exy″−5y′+4y=3ex	y″+y′
−6y=52cos2ty″+y′−6y=52cos2t	Sometimes,	r(x)r(x)	is	not	a	combination	of	polynomials,	exponentials,	or	sines	and	cosines.	When	this	is	the	case,	the	method	of	undetermined	coefficients	does	not	work,	and	we	have	to	use	another	approach	to	find	a	particular	solution	to	the	differential	equation.	We	use	an	approach	called	the	method	of	variation	of
parameters.	To	simplify	our	calculations	a	little,	we	are	going	to	divide	the	differential	equation	through	by	a,a,	so	we	have	a	leading	coefficient	of	1.	Then	the	differential	equation	has	the	form	y″+py′+qy=r(x),y″+py′+qy=r(x),	where	pp	and	qq	are	constants.	If	the	general	solution	to	the	complementary	equation	is	given	by
c1y1(x)+c2y2(x),c1y1(x)+c2y2(x),	we	are	going	to	look	for	a	particular	solution	of	the	form	yp(x)=u(x)y1(x)+v(x)y2(x).yp(x)=u(x)y1(x)+v(x)y2(x).	In	this	case,	we	use	the	two	linearly	independent	solutions	to	the	complementary	equation	to	form	our	particular	solution.	However,	we	are	assuming	the	coefficients	are	functions	of	x,	rather	than	constants.
We	want	to	find	functions	u(x)u(x)	and	v(x)v(x)	such	that	yp(x)yp(x)	satisfies	the	differential	equation.	We	have	yp=uy1+vy2yp′=u′y1+uy1′+v′y2+vy2′yp″=(u′y1+v′y2)′+u′y1′+uy1″+v′y2′+vy2″.yp=uy1+vy2yp′=u′y1+uy1′+v′y2+vy2′yp″=(u′y1+v′y2)′+u′y1′+uy1″+v′y2′+vy2″.	Substituting	into	the	differential	equation,	we	obtain	yp″+pyp′+qyp=[(u′y1+v′y2)′
+u′y1′+uy1″+v′y2′+vy2″]+p[u′y1+uy1′+v′y2+vy2′]+q[uy1+vy2]=u[y1″+py1′+qy1]+v[y2″+py2′+qy2]+(u′y1+v′y2)′+p(u′y1+v′y2)+(u′y1′+v′y2′).yp″+pyp′+qyp=[(u′y1+v′y2)′+u′y1′+uy1″+v′y2′+vy2″]+p[u′y1+uy1′+v′y2+vy2′]+q[uy1+vy2]=u[y1″+py1′+qy1]+v[y2″+py2′+qy2]+(u′y1+v′y2)′+p(u′y1+v′y2)+(u′y1′+v′y2′).	Note	that	y1y1	and	y2y2	are	solutions
to	the	complementary	equation,	so	the	first	two	terms	are	zero.	Thus,	we	have	(u′y1+v′y2)′+p(u′y1+v′y2)+(u′y1′+v′y2′)=r(x).(u′y1+v′y2)′+p(u′y1+v′y2)+(u′y1′+v′y2′)=r(x).	If	we	simplify	this	equation	by	imposing	the	additional	condition	u′y1+v′y2=0,u′y1+v′y2=0,	the	first	two	terms	are	zero,	and	this	reduces	to	u′y1′+v′y2′=r(x).u′y1′+v′y2′=r(x).	So,	with
this	additional	condition,	we	have	a	system	of	two	equations	in	two	unknowns:	u′y1+v′y2=0u′y1′+v′y2′=r(x).u′y1+v′y2=0u′y1′+v′y2′=r(x).	Solving	this	system	gives	us	u′u′	and	v′,v′,	which	we	can	integrate	to	find	u	and	v.	Then,	yp(x)=u(x)y1(x)+v(x)y2(x)yp(x)=u(x)y1(x)+v(x)y2(x)	is	a	particular	solution	to	the	differential	equation.	Solving	this	system	of
equations	is	sometimes	challenging,	so	let’s	take	this	opportunity	to	review	Cramer’s	rule,	which	allows	us	to	solve	the	system	of	equations	using	determinants.	The	system	of	equations	a1z1+b1z2=r1a2z1+b2z2=r2a1z1+b1z2=r1a2z1+b2z2=r2	has	a	unique	solution	if	and	only	if	the	determinant	of	the	coefficients	is	not	zero.	In	this	case,	the	solution
is	given	by	z1=|r1b1r2b2||a1b1a2b2|andz2=|a1r1a2r2||a1b1a2b2|.z1=|r1b1r2b2||a1b1a2b2|andz2=|a1r1a2r2||a1b1a2b2|.	Use	Cramer’s	rule	to	solve	the	following	system	of	equations.	x2z1+2xz2=0z1−3x2z2=2xx2z1+2xz2=0z1−3x2z2=2x	We	have	a	1	(	x	)	=	x	2	a	2	(	x	)	=	1	b	1	(	x	)	=	2	x	b	2	(	x	)	=	−3	x	2	r	1	(	x	)	=	0	r	2	(	x	)	=	2	x	.	a	1	(	x	)	=	x	2	a
2	(	x	)	=	1	b	1	(	x	)	=	2	x	b	2	(	x	)	=	−3	x	2	r	1	(	x	)	=	0	r	2	(	x	)	=	2	x	.	Then,	|	a	1	b	1	a	2	b	2	|	=	|	x	2	2	x	1	−3	x	2	|	=	−3	x	4	−	2	x	|	a	1	b	1	a	2	b	2	|	=	|	x	2	2	x	1	−3	x	2	|	=	−3	x	4	−	2	x	and	|	r	1	b	1	r	2	b	2	|	=	|	0	2	x	2	x	−3	x	2	|	=	0	−	4	x	2	=	−4	x	2	.	|	r	1	b	1	r	2	b	2	|	=	|	0	2	x	2	x	−3	x	2	|	=	0	−	4	x	2	=	−4	x	2	.	Thus,	z	1	=	|	r	1	b	1	r	2	b	2	|	|	a	1	b	1	a	2	b
2	|	=	−4	x	2	−3	x	4	−	2	x	=	4	x	3	x	3	+	2	.	z	1	=	|	r	1	b	1	r	2	b	2	|	|	a	1	b	1	a	2	b	2	|	=	−4	x	2	−3	x	4	−	2	x	=	4	x	3	x	3	+	2	.	In	addition,	|	a	1	r	1	a	2	r	2	|	=	|	x	2	0	1	2	x	|	=	2	x	3	−	0	=	2	x	3	.	|	a	1	r	1	a	2	r	2	|	=	|	x	2	0	1	2	x	|	=	2	x	3	−	0	=	2	x	3	.	Thus,	z	2	=	|	a	1	r	1	a	2	r	2	|	|	a	1	b	1	a	2	b	2	|	=	2	x	3	−3	x	4	−	2	x	=	−2	x	2	3	x	3	+	2	.	z	2	=	|	a	1	r	1	a	2	r	2	|	|	a
1	b	1	a	2	b	2	|	=	2	x	3	−3	x	4	−	2	x	=	−2	x	2	3	x	3	+	2	.	Use	Cramer’s	rule	to	solve	the	following	system	of	equations.	2xz1−3z2=0x2z1+4xz2=x+12xz1−3z2=0x2z1+4xz2=x+1	Solve	the	complementary	equation	and	write	down	the	general	solution	c1y1(x)+c2y2(x).c1y1(x)+c2y2(x).	Use	Cramer’s	rule	or	another	suitable	technique	to	find	functions	u′
(x)u′(x)	and	v′(x)v′(x)	satisfying	u′y1+v′y2=0u′y1′+v′y2′=r(x).u′y1+v′y2=0u′y1′+v′y2′=r(x).	Integrate	u′u′	and	v′v′	to	find	u(x)u(x)	and	v(x).v(x).	Then,	yp(x)=u(x)y1(x)+v(x)y2(x)yp(x)=u(x)y1(x)+v(x)y2(x)	is	a	particular	solution	to	the	equation.	Add	the	general	solution	to	the	complementary	equation	and	the	particular	solution	found	in	step	3	to	obtain	the
general	solution	to	the	nonhomogeneous	equation.	Find	the	general	solution	to	the	following	differential	equations.	y″−2y′+y=ett2y″−2y′+y=ett2	y″+y=3sin2xy″+y=3sin2x	The	complementary	equation	is	y″−2y′+y=0y″−2y′+y=0	with	associated	general	solution	c1et+c2tet.c1et+c2tet.	Therefore,	y1(t)=ety1(t)=et	and	y2(t)=tet.y2(t)=tet.	Calculating
the	derivatives,	we	get	y1′(t)=ety1′(t)=et	and	y2′(t)=et+tety2′(t)=et+tet	(step	1).	Then,	we	want	to	find	functions	u′(t)u′(t)	and	v′(t)v′(t)	so	that	u′et+v′tet=0u′et+v′(et+tet)=ett2.u′et+v′tet=0u′et+v′(et+tet)=ett2.	Applying	Cramer’s	rule,	we	have	u′=|0tetett2et+tet||ettetetet+tet|=0−tet(ett2)et(et+tet)
−ettet=−e2tte2t=−1tu′=|0tetett2et+tet||ettetetet+tet|=0−tet(ett2)et(et+tet)−ettet=−e2tte2t=−1t	and	v′=|et0etett2||ettetetet+tet|=et(ett2)e2t=1t2(step	2).v′=|et0etett2||ettetetet+tet|=et(ett2)e2t=1t2(step	2).	Integrating,	we	get	u=−∫1tdt=−ln|t|v=∫1t2dt=−1t(step	3).u=−∫1tdt=−ln|t|v=∫1t2dt=−1t(step	3).	Then	we	have	yp=−etln|t|
−1ttet=−etln|t|−et(step	4).yp=−etln|t|−1ttet=−etln|t|−et(step	4).	The	etet	term	is	a	solution	to	the	complementary	equation,	so	we	don’t	need	to	carry	that	term	into	our	general	solution	explicitly.	The	general	solution	is	y(t)=c1et+c2tet−etln|t|(step	5).y(t)=c1et+c2tet−etln|t|(step	5).	The	complementary	equation	is	y″+y=0y″+y=0	with	associated
general	solution	c1cosx+c2sinx.c1cosx+c2sinx.	So,	y1(x)=cosxy1(x)=cosx	and	y2(x)=sinxy2(x)=sinx	(step	1).	Then,	we	want	to	find	functions	u′(x)u′(x)	and	v′(x)v′(x)	such	that	u′cosx+v′sinx=0−u′sinx+v′cosx=3sin2x.u′cosx+v′sinx=0−u′sinx+v′cosx=3sin2x.	Applying	Cramer’s	rule,	we	have
u′=|0sinx3sin2xcosx||cosxsinx−sinxcosx|=0−3sin3xcos2x+sin2x=−3sin3xu′=|0sinx3sin2xcosx||cosxsinx−sinxcosx|=0−3sin3xcos2x+sin2x=−3sin3x	and	v′=|cosx0−sinx3sin2x||cosxsinx−sinxcosx|=3sin2xcosx1=3sin2xcosx(step	2).v′=|cosx0−sinx3sin2x||cosxsinx−sinxcosx|=3sin2xcosx1=3sin2xcosx(step	2).	Integrating	first	to	find	u,	we	get
u=∫−3sin3xdx=−3[−13sin2xcosx+23∫sinxdx]=sin2xcosx+2cosx.u=∫−3sin3xdx=−3[−13sin2xcosx+23∫sinxdx]=sin2xcosx+2cosx.	Now,	we	integrate	to	find	v.	Using	substitution	(with	w=sinxw=sinx),	we	get	v=∫3sin2xcosxdx=∫3w2dw=w3=sin3x.v=∫3sin2xcosxdx=∫3w2dw=w3=sin3x.	Then,	yp	=(sin2xcosx+2cosx)cosx+
(sin3x)sinx=sin2xcos2x+2cos2x+sin4x	=2cos2x+sin2x(cos2x+sin2x)(step	3).=2cos2x+sin2x=cos2x+1yp	=(sin2xcosx+2cosx)cosx+(sin3x)sinx=sin2xcos2x+2cos2x+sin4x	=2cos2x+sin2x(cos2x+sin2x)(step	3).=2cos2x+sin2x=cos2x+1	The	general	solution	is	y(x)=c1cosx+c2sinx+1+cos2x(step	4).y(x)=c1cosx+c2sinx+1+cos2x(step	4).	Find	the
general	solution	to	the	following	differential	equations.	y″+y=secxy″+y=secx	x″−2x′+x=ettx″−2x′+x=ett	Solve	the	following	equations	using	the	method	of	undetermined	coefficients.	54.	2	y	″	−	5	y	′	−	12	y	=	6	2	y	″	−	5	y	′	−	12	y	=	6	55.	3	y	″	+	y	′	−	4	y	=	8	3	y	″	+	y	′	−	4	y	=	8	56.	y	″	−	6	y	′	+	5	y	=	e	−	x	y	″	−	6	y	′	+	5	y	=	e	−	x	57.	y	″	+	16	y	=	e	−2	x
y	″	+	16	y	=	e	−2	x	58.	y	″	−	4	y	=	x	2	+	1	y	″	−	4	y	=	x	2	+	1	59.	y	″	−	4	y	′	+	4	y	=	8	x	2	+	4	x	y	″	−	4	y	′	+	4	y	=	8	x	2	+	4	x	60.	y	″	−	2	y	′	−	3	y	=	sin	2	x	y	″	−	2	y	′	−	3	y	=	sin	2	x	61.	y	″	+	2	y	′	+	y	=	sin	x	+	cos	x	y	″	+	2	y	′	+	y	=	sin	x	+	cos	x	62.	y	″	+	9	y	=	e	x	cos	x	y	″	+	9	y	=	e	x	cos	x	63.	y	″	+	y	=	3	sin	2	x	+	x	cos	2	x	y	″	+	y	=	3	sin	2	x	+	x	cos	2	x	64.
y	″	+	3	y	′	−	28	y	=	10	e	4	x	y	″	+	3	y	′	−	28	y	=	10	e	4	x	65.	y	″	+	10	y	′	+	25	y	=	x	e	−5	x	+	4	y	″	+	10	y	′	+	25	y	=	x	e	−5	x	+	4	In	each	of	the	following	problems,	Write	the	form	for	the	particular	solution	yp(x)yp(x)	for	the	method	of	undetermined	coefficients.	[T]	Use	a	computer	algebra	system	to	find	a	particular	solution	to	the	given	equation.	66.	y	″
−	y	′	−	y	=	x	+	e	−	x	y	″	−	y	′	−	y	=	x	+	e	−	x	67.	y	″	−	3	y	=	x	2	−	4	x	+	11	y	″	−	3	y	=	x	2	−	4	x	+	11	68.	y	″	−	y	′	−	4	y	=	e	x	cos	3	x	y	″	−	y	′	−	4	y	=	e	x	cos	3	x	69.	2	y	″	−	y	′	+	y	=	(	x	2	−	5	x	)	e	−	x	2	y	″	−	y	′	+	y	=	(	x	2	−	5	x	)	e	−	x	70.	4	y	″	+	5	y	′	−	2	y	=	e	2	x	+	x	sin	x	4	y	″	+	5	y	′	−	2	y	=	e	2	x	+	x	sin	x	71.	y	″	−	y	′	−	2	y	=	x	2	e	x	sin	x	y	″	−	y	′	−	2	y
=	x	2	e	x	sin	x	Solve	the	differential	equation	using	either	the	method	of	undetermined	coefficients	or	the	variation	of	parameters.	72.	y	″	+	3	y	′	−	4	y	=	2	e	x	y	″	+	3	y	′	−	4	y	=	2	e	x	73.	y	″	+	2	y	′	=	e	3	x	y	″	+	2	y	′	=	e	3	x	74.	y	″	+	6	y	′	+	9	y	=	e	−	x	y	″	+	6	y	′	+	9	y	=	e	−	x	75.	y	″	+	2	y	′	−	8	y	=	6	e	2	x	y	″	+	2	y	′	−	8	y	=	6	e	2	x	Solve	the	differential
equation	using	the	method	of	variation	of	parameters.	76.	4	y	″	+	y	=	2	sin	x	4	y	″	+	y	=	2	sin	x	77.	y	″	−	9	y	=	8	x	y	″	−	9	y	=	8	x	78.	y	″	+	y	=	sec	x	,	0	<	x	<	π	/	2	y	″	+	y	=	sec	x	,	0	<	x	<	π	/	2	79.	y	″	+	4	y	=	3	csc	2	x	,	0	<	x	<	π	/	2	y	″	+	4	y	=	3	csc	2	x	,	0	<	x	<	π	/	2	Find	the	unique	solution	satisfying	the	differential	equation	and	the	initial	conditions
given,	where	yp(x)yp(x)	is	the	particular	solution.	80.	y″−2y′+y=12ex,y″−2y′+y=12ex,	yp(x)=6x2ex,yp(x)=6x2ex,	y(0)=6,y′(0)=0y(0)=6,y′(0)=0	81.	y″−7y′=4xe7x,y″−7y′=4xe7x,	yp(x)=27x2e7x−449xe7x,yp(x)=27x2e7x−449xe7x,	y(0)=−1,y′(0)=0y(0)=−1,y′(0)=0	82.	y″+y=cosx−4sinx,y″+y=cosx−4sinx,	yp(x)=2xcosx+12xsinx,yp(x)=2xcosx+12xsinx,
y(0)=8,y′(0)=−4y(0)=8,y′(0)=−4	83.	y″−5y′=e5x+8e−5x,y″−5y′=e5x+8e−5x,	yp(x)=15xe5x+425e−5x,yp(x)=15xe5x+425e−5x,	y(0)=−2,y′(0)=0y(0)=−2,y′(0)=0	In	each	of	the	following	problems,	two	linearly	independent	solutions—y1y1	and	y2y2—are	given	that	satisfy	the	corresponding	homogeneous	equation.	Use	the	method	of	variation	of
parameters	to	find	a	particular	solution	to	the	given	nonhomogeneous	equation.	Assume	x	>	0	in	each	exercise.	84.	x2y″+2xy′−2y=3x,x2y″+2xy′−2y=3x,	y1(x)=x,y2(x)=x−2y1(x)=x,y2(x)=x−2	85.	x2y″−2y=10x2−1,x2y″−2y=10x2−1,	y1(x)=x2,y2(x)=x−1y1(x)=x2,y2(x)=x−1	Learning	about	non-homogeneous	differential	equations	is	fundamental	since
there	are	instances	when	we’re	given	complex	equations	with	functions	on	both	sides	of	the	equation.	Laws	of	motion,	for	example,	rely	on	non-homogeneous	differential	equations,	so	it	is	important	that	we	learn	how	to	solve	these	types	of	equations.Non-homogenous	differential	equations	contain	functions	on	the	right-hand	side	of	the	equations.	We
can	find	their	solutions	by	writing	down	the	general	solution	of	the	associated	homogeneous	differential	equation	and	the	particular	solution	of	the	non-homogeneous	term.Solving	non-homogeneous	differential	equations	will	still	require	our	knowledge	on	solving	second	order	homogeneous	differential	equations,	so	keep	your	notes	handy	on
characteristic	and	second	order	homogeneous	equations.	This	article	covers	the	fundamentals	needed	to	identify	non-homogeneous	differential	equations	and	two	important	methods	that	will	help	you	find	their	solutions.What	Is	a	Non	Homogeneous	Differential	Equation?Non-homogeneous	differential	equations	are	simply	differential	equations	that
do	not	satisfy	the	conditions	for	homogeneous	equations.	In	the	past,	we’ve	learned	that	homogeneous	equations	are	equations	that	have	zero	on	the	right-hand	side	of	the	equation.This	means	that	non-homogenous	differential	equations	are	differential	equations	that	have	a	function	on	the	right-hand	side	of	their	equation.Here	are	some	examples	of
homogeneous	and	non-homogenous	differential	equations.	Through	these	examples,	we’ll	learn	how	to	identify	differential	equations	based	on	their	form.Homogeneous	Differential	EquationsNon-Homogenous	Differential	Equations\begin{aligned}y^{\prime	\prime}	+	y^{\prime}	–	2y	=	0\end{aligned}\begin{aligned}y^{\prime	\prime}	+
y^{\prime}	–	2y	=	4x\end{aligned}\begin{aligned}y^{\prime	\prime}	-3y^{\prime}		+	y	=	0\end{aligned}\begin{aligned}y^{\prime	\prime}	-3y^{\prime}		+	y	=	-6	–	2x	+	3x^2\end{aligned}\begin{aligned}y^{\prime	\prime	\prime}	+4y^{\prime\prime}	+	4y^{\prime}	+	y	=	0\end{aligned}\begin{aligned}y^{\prime	\prime	\prime}
+4y^{\prime\prime}	+	4y^{\prime}	+	y	=	2e^x\end{aligned}From	these	three	equations	alone,	we	can	clearly	see	that	the	right-hand	side	of	the	equations	will	determine	whether	the	differential	equations	are	homogeneous	or	non-homogeneous.	We	call	the	equations	on	the	left	column	the	associated	homogeneous	equations,	since	they	share
identical	expressions	with	their	non-homogeneous	counterparts.	Since	we’ve	been	working	on	first	order	and	second	order	non-homogeneous	linear	differential	equations,	let	us	show	you	their	general	forms:\begin{aligned}\textbf{First	Order}	&:	y^{\prime}	+	P(x)y	=	f(x)\\\textbf{Second	Order}	&:	y^{\prime}	+	P(x)y^{\prime}	+	Q(x)y	=	g(x)\\
\end{aligned}In	the	next	section,	we’ll	show	you	how	to	solve	these	types	of	equations	by	applying	old	techniques	and	even	new	methods!How	To	Solve	Non	Homogeneous	Differential	Equations?We	can	solve	non-homogeneous	linear	differential	equations	by	finding	the	general	solution	of	the	associated	homogeneous	differential	equation,	$y_h$,	and
the	particular	solution	of	the	non-homogeneous	equation,	$y_p$.Let’s	work	on	a	first	order	non-homogeneous	differential	equation	to	start	this	section	lightly.\begin{aligned}y^{\prime}	+	P(x)y	=	f(x)\end{aligned}In	the	past,	we’ve	learned	how	to	deal	with	these	types	of	equations.	We’ve	shown	you	how	to	use	integrating	factors	to	write	the	general
equation	for	a	first	order	non-homogeneous	differential	equation.	This	process	will	eventually	lead	to	a	general	solution	shown	below.\begin{aligned}y	&=	h(x)	+	p(x)	\end{aligned}For	this	solution,	$g(x)$	represents	the	general	solution,	while	$h(x)$	represents	the	particular	solution	of	the	first	order	non-homogeneous	differential	equation.	Since
we’ve	set	a	special	article	for	that,	our	discussion	will	focus	on	second	order	non-homogeneous	differential	equations	and	those	with	a	higher	order	as	well.											SOLUTION	FOR	NON	HOMOGENEOUS	DIFFERENTIAL	EQUATIONSSuppose	that	we	have	a	second	order	non-homogeneous	linear	differential	equation	shown
below.\begin{aligned}y^{\prime	\prime}	+ay^{\prime}	+	by	&=	g(x)\end{aligned}For	this	equation,	$a$	and	$b$	are	constants.	When	this	happens,	the	nonhomogeneous	differential	equation	with	a	general	solution	as	shown	below.\begin{aligned}\boldsymbol{y}	&=	\boldsymbol{y_h	+	y_p}\\\\y_h&:	\text{General	Solution}\\y_p&:	\text{Particular
Solution}\end{aligned}This	can	be	extended	with	$n$th-order	non-homogeneous	linear	differential	equation.	The	general	solution	of	this	linear	differential	equation	is	as	shown	below.\begin{aligned}c_1y_1	+	c_2\end{aligned}In	previous	articles,	we	have	also	learned	how	to	find	the	general	solutions	for	homogeneous	differential	equations.	We’ll
apply	the	same	methods	and	techniques	when	finding	the	general	solution	for	our	associated	homogeneous	equation.	This	means	that	we’ll	be	focusing	on	techniques	to	find	the	particular	solution	for	these	non-homogeneous	equations.How	To	Find	the	Particular	Solution	of	a	Non	Homogeneous	Differential	EquationThe	two	most	common	methods
when	finding	the	particular	solution	of	a	non-homogeneous	differential	equation	are:	1)	the	method	of	undetermined	coefficients	and	2)	the	method	of	variation	of	parameters.Method	of	Undetermined	CoefficientsLet’s	first	break	down	the	steps	for	the	method	of	undetermined	coefficients	and	know	when	it’s	best	to	use	this	technique.	The
undetermined	coefficient	method	works	best	when	the	right-hand	side	of	our	non-homogeneous	differential	equation	is	a	function	that	can	be	written	as	sum	or	product	of	the	following	functions:	$x^n$,	$e^{ax}$,$\sin	\beta	x$,	or	$\cos	\beta	x$.\begin{aligned}y^{\prime	\prime}	+ay^{\prime}	+	by	&=	g(x)\end{aligned}Once	we	identify	the	form	of
the	$g(x)$,	use	a	strategic	guess	for	the	particular	solution,	$y_p$.	Let	us	show	you	some	common	examples	for	a	smart	guess	given	an	expression	for	$g(x)$:Example	of	$\boldsymbol{g(x)}$Particular	Solution	($\boldsymbol{y_p}$)\begin{aligned}g(x)	=	2x^2\end{aligned}\begin{aligned}y_p	=	ax^2	+	bx	+	c\end{aligned}\begin{aligned}g(x)	=
3xe^x\end{aligned}\begin{aligned}y_p	=	axe^x	+	bex^x	c\end{aligned}\begin{aligned}g(x)	=	x	+	4\cos	3x\end{aligned}\begin{aligned}y_p	=	(ax	+	b)	+	c	\sin	3x	+	d	+	\cos	3x\end{aligned}These	three	equations	should	give	you	an	idea	of	how	we	come	up	with	particular	solutions	we	can	use	to	complete	the	general	solution	for	our	second	order
homogeneous	differential	equation.	Find	the	first	and	second	derivatives	of	$y_p$	and	use	them	inside	the	equation	then	solve	for	the	values	of	the	constants.To	understand	how	this	method	works,	let’s	try	to	solve	the	non-homogeneous	differential	equations,	$y^{\prime	\prime}	+	6y^{\prime}	+	5y	=	4x$.	First,	let’s	find	$y_h$,	the	general	solution
of	the	equation’s	associated	homogeneous	equation.	\begin{aligned}y^{\prime	\prime}	+	6y^{\prime}	+	5y	=	0\end{aligned}This	means	that	the	characteristic	equation	(or	auxiliary	equation)	is	a	quadratic	equation,	$r^2	+	6r	+	5=	0$.	The	roots	of	this	equation	are	$r_1	=	-1$	and	$r_2	=	-5$,	so	the	general	form	of	$y_h$	is	equal	to	the	equation
shown	below.\begin{aligned}y_h	=	C_1	e^{-x}	+	C_2	e^{-5x}	\end{aligned}Since	our	equation’s	right-hand	side	is	equal	to	$g(x)	=	4x$,	the	general	form	of	our	particular	solution	would	be	equivalent	to	$y_p	=	ax	+	b$.	This	means	that	$y_p^{\prime		}	=	a$	and	$y_p^{\prime		}	=	0$.	We’ve	learned	in	the	past	that	the	particular	solution	should	be
a	solution	to	the	differential	equation,	so	substitute	these	expressions	and	solve	for	$a$	and	$b$.\begin{aligned}y^{\prime	\prime}_p	+	6y^{\prime}_p	+	5y_p	&=	4x\\0	+	6a	+	5(ax	+b)	&=	4x\\5ax	+	(6a	+b)	&=	4x\\\\5a=	4,	6a	&+b	=0\\a	=	\dfrac{4}{5}	,b	=&	-\dfrac{24}{5}\end{aligned}This	means	that	$y_p	=	\dfrac{4}{5}x	–	\dfrac{24}{5}$.	
Now	that	we	have	both	components,	$y_h$	and	$y_p$,	let’s	complete	the	general	solution	of	our	second	order	non-homogeneous	differential	equation	is:\begin{aligned}y_h&=	C_1	e^{-x}	+	C_2	e^{-5x}	\\y_p&=\dfrac{4}{5}x	–	\dfrac{24}{5}\\\\	\boldsymbol{y(x)}	&\boldsymbol{=}	\boldsymbol{C_1	e^{-x}	+	C_2	e^{-5x}+\dfrac{4}{5}x	–
\dfrac{24}{5}}	\end{aligned}We’ve	now	shown	you	how	the	first	method	works,	so	let’s	move	on	to	our	second	technique:	the	method	of	variation	of	parameters.Method	of	Variation	ParametersFor	more	complex	expressions	for	$g(x)$,	it	may	be	difficult	to	come	up	with	a	particular	solution	that	we	can	easily	use.	When	that	happens,	it	is	much
better	for	us	to	apply	the	method	of	variation	parameters,	where	we	assume	that	the	general	and	particular	solution	components	have	the	same	forms.	Below	are	the	guidelines	to	remember	when	using	this	method:Find	the	expression	for	$y_h	=	C_1y_1	+	C_2y_2$,	using	previous	techniques.Write	down	the	particular	solution,	$y_p	=	ay_1	+	by_2$,
based	on	the	form	of	$y_h$.Set	up	the	system	of	equations	to	solve	for	$a^{\prime}$	and	$b^{\prime}$.\begin{aligned}a^{\prime}y_1	+	b^{\prime}y_2	&=	0\\a^{\prime}y_1^{\prime}	+	b^{\prime}y_2^{\prime}	&=	g(x)	\end{aligned}Integrate	the	resulting	expressions	for	$a^{\prime}$	and	$b^{\prime}$	to	find	$a$	and	$b$.Write	down	the
general	solution	for	the	non-homogeneous	differential	equation:	$y	=	y_h	+	y_p$.These	steps	are	straightforward	but	can	be	complex	depending	on	the	resulting	expressions.	Just	apply	the	appropriate	techniques	learned	in	the	past	to	find	the	solutions	using	variations	of	parameters.	Our	first	example	below	shows	how	we	can	use	this	method	to	solve
more	interesting	non-homogeneous	differential	equations.Example	1Find	the	general	solution	of	the	non-homogeneous	differential	equation,	$y^{\prime\prime}	+y	=	\tan	x$.SolutionSince	we	don’t	have	a	guiding	rule	for	$g(x)	=	\tan	x$,	we	can’t	use	the	method	of	undetermined	coefficients.	We	can	instead	use	the	second	method	beginning	with
finding	the	general	solution	for	the	associated	homogeneous	equations.	This	means	that	the	characteristic	equation	is	equal	to	$r^2	+	1=	0	\rightarrow	r	=	\pm	i$,	so	the	homogeneous	solution	is	equal	to\begin{aligned}y_h	=	C_1\cos	x	+	C_2	\sin	x\end{aligned}Using	the	form	of	$y_h$,	let’s	use	the	particular	solution,	$y_p	=	a\cos	x	+b\sin	x$.	Write
down	the	system	of	linear	equations:\begin{aligned}a^{\prime}\cos	x+	b^{\prime}\sin	x	&=	0\\-a^{\prime}\sin	x+	b^{\prime}\cos	x	&=	\tan	x	\end{aligned}Apply	the	elimination	method	by	multiplying	appropriate	factors	then	find	$a$.\begin{aligned}{\color{blue}\sin	x}(a^{\prime}\cos	x+	b^{\prime}\sin	x)	&=	{\color{blue}\sin	x}(0)\\
{\color{blue}\cos	x}(-a^{\prime}\sin	x+	b^{\prime}\cos	x	)	&=	{\color{blue}\cos	x}(\tan	x)\\\\a^{\prime}\sin	x\cos	x	+	b^{\prime}\sin^2x&=	0\\-a^{\prime}\sin	x\cos	x	+	b^{\prime}\cos^2x&=	\sin	x	\end{aligned}Simplify	the	equation	further	and	you	should	come	up	with	$b^{\prime}	=	\cos	x	–	\sec	x	$.	This	eventually	leads	to	$a^{\prime}	=	-
\dfrac{\sin^2	x}{\cos	x}	=	\cos	x	–	\sec	x$.	Integrate	the	expressions	to	find	the	constants	for	$y_p$.\begin{aligned}\boldsymbol{a^{\prime}	=	\cos	x	–	\sec	x}\end{aligned}\begin{aligned}\boldsymbol{\sin	x}\end{aligned}\begin{aligned}	a^{\prime}		&=	\int	(\cos	x	–	\sec	x	)	\phantom{x}dx\\&=	\sin	x	–	\ln	|\sec	x	+\tan
x|\end{aligned}\begin{aligned}	b^{\prime}		&=	\int	\sin	x	\phantom{x}dx\\&=	-\cos	x\end{aligned}\begin{aligned}	y_p	&=	a\cos	x	+b\sin	x\\&=	\cos	x(\sin	x	–	\ln	|\sec	x	+\tan	x|)	+	\sin	x(-\cos	x)\\&=	-\cos	x	\ln	|\sec	x	+\tan	x|\end{aligned}Combining	the	expressions	for	$y_h$	and	$y_p$,	we	have	$y	=	y_h	+	y_p	=	C_1\cos	x	+	C_2	\sin	x	-\cos	x	\ln
|\sec	x	+\tan	x|$.Example	2Find	the	general	solution	of	the	non-homogeneous	differential	equation,	$y^{\prime\prime\prime}	+	6y^{\prime\prime}	+	12y^{\prime}	+8y	=	4x$.SolutionOur	right-hand	side	this	time	is	$g(x)	=	4x$,	so	we	can	use	the	first	method:	undetermined	coefficients.	We	begin	by	finding	the	general	solution	for	the	associated



homogeneous	equations,	$	y^{\prime\prime\prime}	+	6y^{\prime\prime}	+	12y^{\prime}	+8y	=	0$.	This	type	of	third-order	differential	equation	will	have	a	general	solution	of	$y_h=C_1e^{r_1x}+	C_2xe^{r_2x}+	C_3x^2e^{r_3x}$,	where	$\{r_1,	r_2,	r_3\}$	are	roots	of	the	characteristic	equation.\begin{aligned}	y_h=	C_1e^{-2x}+
C_2xe^{-2x}+	C_3x^2e^{-2x}\end{aligned}Since	the	right-hand	side	of	the	equation	is	equal	to	$4x$,	the	particular	solution,	$y_p$	will	have	a	general	form	of	$ax	+	b$.	This	means	that	$y_p^{\prime}	=a$	and	$y_p^{\prime	\prime}	=0$.\begin{aligned}	y^{\prime\prime\prime}	+	6y^{\prime\prime}	+	12y^{\prime}	+	8y	&=	4x\\0	+	6(0)	+	12a	+
8(ax	+b)	&=	4x\\8ax	+	(12a	+8b)	&=	4x\\\\8a=	4	&\rightarrow	a	=	\dfrac{1}{2}\\6+8b	=0	&\rightarrow	b=-\dfrac{3}{4}\end{aligned}This	means	that	we	have	the	particular	solution,	$y_p	=	\dfrac{1}{2}x	–	\dfrac{3}{4}$.	Combine	the	two	components	of	our	equation	to	find	the	general	equation	of	the	third	order	non-homogeneous	differential
equation.\begin{aligned}y&=	y_h	+	y_p\\&=	C_1e^{-2x}+	C_2xe^{-2x}+	C_3x^2e^{-2x}	+\dfrac{1}{2}x	–	\dfrac{3}{4}\end{aligned}Practice	Questions1.	Find	the	general	solution	of	the	non-homogeneous	differential	equation,	$y^{\prime\prime}	+y^{\prime}-6	=	x^3$.	2.	Find	the	general	solution	of	the	non-homogeneous	differential	equation,
$y^{\prime\prime}	-2y^{\prime}	=	\dfrac{e^x}{4x}$.	3.	Find	the	general	solution	of	the	non-homogeneous	differential	equation,	$	y^{\prime\prime\prime}+3y^{\prime\prime}+3y^{\prime}	+y	=	2x	$.


