
	

https://vopatabubujen.godoxevez.com/949663441972595135896631105389536756933353?voguxobilibefoboponovokaxovotobixewiloluvo=damakujemizugixakaxebosojoteviwonujitonegebirevedoregigojogebolipajukakidifabowuxanolasedokususepaxadeximexunuzoxatizowazubisemoxowivotojopafudarisibuzujudatujorevepuneragesujipizuxirupaxuvakovonevubapidixe&utm_term=is+geogebra+free&sijeteritosagonamezuwuvimufagexuparamofexiretezinawomoginemidininene=zojasarasosajidejipobexaforupokawalisawibebejapiwiradosaveragopovirusamafazifigipaxumenumanefexoloturaros

Find	free,	ready-to-use	math	resources	for	algebra,	geometry,	number	sense,	measurement,	operations,	statistics	and	probability	across	grades	4-8	and	high	school	to	enhance	student	exploration	and	practice!Check	out	some	fun	and	interactive	examples	handpicked	by	our	staffExplore	the	wide	range	of	resources	created	by	the	GeoGebra	Content
Team	to	support	your	students'	learning	needsExplore	an	extensive	collection	of	over	one	million	math	and	science	activities,	exercises	and	lessons	meticulously	crafted	by	our	global	GeoGebra	community.	Immerse	yourself	in	the	boundless	possibilities	that	await	you.Create	a	free	account	so	you	can	save	your	progress	any	time	and	access	thousands
of	math	resources	for	you	to	customize	and	share	with	others	Share	—	copy	and	redistribute	the	material	in	any	medium	or	format	for	any	purpose,	even	commercially.	Adapt	—	remix,	transform,	and	build	upon	the	material	for	any	purpose,	even	commercially.	The	licensor	cannot	revoke	these	freedoms	as	long	as	you	follow	the	license	terms.
Attribution	—	You	must	give	appropriate	credit	,	provide	a	link	to	the	license,	and	indicate	if	changes	were	made	.	You	may	do	so	in	any	reasonable	manner,	but	not	in	any	way	that	suggests	the	licensor	endorses	you	or	your	use.	ShareAlike	—	If	you	remix,	transform,	or	build	upon	the	material,	you	must	distribute	your	contributions	under	the	same
license	as	the	original.	No	additional	restrictions	—	You	may	not	apply	legal	terms	or	technological	measures	that	legally	restrict	others	from	doing	anything	the	license	permits.	You	do	not	have	to	comply	with	the	license	for	elements	of	the	material	in	the	public	domain	or	where	your	use	is	permitted	by	an	applicable	exception	or	limitation	.	No
warranties	are	given.	The	license	may	not	give	you	all	of	the	permissions	necessary	for	your	intended	use.	For	example,	other	rights	such	as	publicity,	privacy,	or	moral	rights	may	limit	how	you	use	the	material.	Free	mathematics	software	with	utilities	for	performing	algebra,	calculus	and	geometry	which	creates	different	visual	flat	and	3D
graphs.GeoGebra,	an	open-source	utility	designed	explicitly	for	helping	users	design	diverse	mathematical	objects	used	for	calculus,	algebra	and	geometry.	Since	it	is	a	Java-based	application,	ensure	that	the	working	environment	has	been	installed	previously	on	the	computer.Lovely	UIWith	a	user-friendly	interface	and	clear-cut	options,	it	offers	quick
access	to	different	drawing	tools	that	can	be	easily	inserted	in	the	working	pane.	GeoGebra	empowers	you	to	add	points	and	vectors,	perform	calculations	with	them,	and	include	lines	and	axes,	conic	sections	and	arcs,	curves,	inequalities,	intervals,	and	functions.Take	advantage	of	a	wide	array	of	math	functions,	including	number	creation,	​C0	and
Euler	constants	for	expressions	and	calculations,	and	work	with	angles,	Boolean	variables,	matrix	operations,	embedded	text	messages,	and	images.Customizable	visualizationsCustomize	object	properties	by	revealing	or	hiding	the	inserted	objects	in	graphical	representation,	filling	them	with	a	color,	fixing	them	to	a	certain	position	so	that	they
cannot	be	moved,	redefined	or	deleted.	You	can	also	change	the	name	of	an	object,	label	it	with	its	value,	create	animations	with	numbers,	angles,	or	points,	and	enable	the	tracing	mode	for	viewing	an	object’s	position.Scripting	and	exportingGeoGebra	offers	support	for	two	scripting	languages	(GGBScript	and	Javascript),	allowing	you	to	create	a
sequence	of	commands	for	designing	or	modifying	objects.	Additionally,	you	can	record	the	values	for	each	object	in	a	spreadsheet	list,	including	numbers,	points,	and	vectors.The	projects	you	generate	can	be	saved	to	a	file	(e.g.	HTML,	PNG,	EPS,	GIF),	uploaded	on	the	developer’s	website,	or	printed.To	sum	it	upIn	conclusion,	GeoGebra	comes
packed	with	many	dedicated	parameters	that	help	you	learn	or	teach	various	mathematical	objects	and	operations.Features	of	GeoGebra3D	Graphics:	Generate	3D	models	and	rotate	and	zoom	them.Animations:	Visualize	changes	of	graphs	with	time	and	dynamic	sliders.CAS:	Access	an	integrated	Computer	Algebra	System	for	exact
calculations.Calculations:	Perform	algebraic	computations	and	number	crunching.Exports:	Save	your	work	as	images,	videos,	web	pages	or	other	formats.Geometry:	Construct	interactive	geometric	figures	and	measure	properties.Graphs:	Create	2D	and	3D	plots	and	view	them	from	different	perspectives.Interactivity:	Add	interactive	elements	such	as
buttons,	checkboxes	and	input	fields.Measurement:	Measure	lengths	and	angles	accurately	in	3D	figures.Polynomials:	Factorize	and	expand	polynomials	with	the	Polynomial	Tool.Primitives:	Use	basic	primitives	such	as	points,	lines,	circles	and	polygons.Scripting:	Create	custom	scripts	to	automate	and	extend	GeoGebra.Spreadsheet:	Organize	your
data	in	tables	and	create	charts.Spreadsheet	Functions:	Use	spreadsheet	functions	to	analyze	data.Statistics:	Analyze	data	and	generate	statistical	diagrams.Compatibility	and	LicenseGeoGebra	is	provided	under	a	freeware	license	on	Windows	from	calculators	with	no	restrictions	on	usage.	Download	and	installation	of	this	PC	software	is	free	and
6.0.887.0	is	the	latest	version	last	time	we	checked.What	version	of	Windows	can	GeoGebra	run	on?GeoGebra	can	be	used	on	a	computer	running	Windows	11	or	Windows	10.	Previous	versions	of	the	OS	shouldn't	be	a	problem	with	Windows	8	and	Windows	7	having	been	tested.	It	comes	in	both	32-bit	and	64-bit	downloads.Other	operating	systems:
The	latest	GeoGebra	version	from	2025	is	also	available	for	Mac.Filed	under:	GeoGebra	DownloadFree	CalculatorsMath	Calculation	Software	This	repository	contains	source	code	of	GeoGebra's	math	apps.	It	is	available	on	a	private	GitLab	instance	and	mirrored	to	GitHub.	Please	read	about	GeoGebra's	licensing.	To	start	the	web	version	from
command	line,	run	This	will	start	a	development	server	on	your	machine	where	you	can	test	the	app.	If	you	need	to	access	the	server	from	other	devices,	you	can	specify	a	binding	address	./gradlew	:web:run	-Pgbind=A.B.C.D	where	A.B.C.D	is	your	IP	address.	Then	you	can	access	the	dev	server	through	.	You	can	also	run	./gradlew	:web:tasks	to	list
other	options.	To	start	the	desktop	version	from	command	line,	run	You	can	also	run	./gradlew	:desktop:tasks	to	list	other	options.	Open	IntelliJ.	If	you	don't	have	IntelliJ	on	your	computer	yet	then	you	can	download	and	install	it	from	here	In	the	menu	select	File	/	New	/	Project	from	Version	Control	/	Git	In	the	new	window	add	the	following	path:	Click
on	‘Checkout’,	select	your	preferred	destination	folder,	select	Java	1.8	as	the	SDK,	click	on	OK	and	wait…	After	the	project	is	checked	out,	select	the	root	folder	of	the	project,	open	the	Run	Anything	tool	(Double	^	on	Mac)	and	run	the	following	command:	./gradlew	:web:run	After	a	minute	or	two	the	GWT	UI	will	appear	After	the	Startup	URLs	are
loaded	on	the	UI,	select	the	app	that	you	wish	start.	For	example,	if	you	select	graphing.html	and	click	on	Launch	Default	Browser	then	the	Graphing	Calculator	app	with	the	newest	features	will	load	and	start	in	your	default	browser	Create	a	free	account	so	you	can	save	your	progress	any	time	and	access	thousands	of	math	resources	for	you	to
customize	and	share	with	others	GeoGeobra	is	an	intelligent	graphing	software	that	allows	the	user	to	interactively	explore	2D	and	3D	Cartesian	&	Euclidean	geometry	-	as	well	as	calculus.	Best	of	all	-	it's	a	free	offering!	You	can	download	it	from	.	From	their	blurb:	GeoGebra	is	a	free	and	multi-platform	dynamic	mathematics	software	for	schools	that
joins	geometry,	algebra	and	calculus.	Building	an	Interactive	Document	in	GeoGebra	Let's	go	through	the	process	of	creating	a	document	in	GeoGebra.	Our	document	will	allow	the	end-user	to	explore	the	changing	slope	of	a	polynomial	as	x	changes	value.	First,	we	enter	the	function	at	the	bottom	of	the	screen,	using	the	carat	"^"	for	powers	of	x:	The
program	converts	the	function	display	(see	under	"Free	objects")	so	that	it	is	more	easily	read	by	a	human.	I	have	scaled	the	y-axis	by	clicking	on	the	"Move"	tool	(the	one	on	the	far	top	right)	and	simply	dragging	the	axis	to	the	desired	scale.	Next,	we	are	going	to	add	a	tangent	line	to	our	curve.	We	add	a	new	point	on	the	function	using	the	"New
point"	tool:	We	place	the	new	point	anywhere	on	the	curve	by	clicking	on	the	curve.	It	will	now	"stick"	to	the	curve	as	we	drag	it.	Note	the	other	tools	that	are	available	on	this	tool	item:	Intersection	of	2	two	curves	Midpoint	between	2	points	Now	we	choose	the	"Tangent"	tool	as	follows:	Note	the	other	tools	that	are	available	on	this	drop-down.	You
can	construct:	Perpendicular	line	through	a	point	Parallel	line	through	a	point	Perpendicular	bisector	Bisector	of	an	angle	Diameter	line	of	a	conic	section	Helpful	hints	appear	on	the	GeoGebra	interface	that	tell	us	to	click	on	the	point,	then	the	curve.	We	now	have	a	tangent	line.	The	exploratory	activity	we	can	do	now	is	to	drag	the	point	"A"	to	any
position	on	the	curve	(after	selecting	the	"pointer"	icon	at	the	far	left)	and	the	tangent	line	follows	along.	Even	better,	we	can	get	a	readout	of	the	actual	slope	as	we	move	around	the	curve,	by	typing	in:	s	=	Slope[a]	Rather	than	just	giving	a	numerical	value	for	the	slope,	it	actually	gives	a	triangle	with	base	length	1	unit,	indicating	more	clearly	what	a
slope	at	a	point	really	means.	The	result	for	one	part	of	the	curve	is	as	follows:	Let's	now	add	the	curve	of	the	first	derivative	to	our	existing	plot.	(Of	course,	we	expect	the	first	derivative	curve	to	be	a	parabola,	since	it	will	be	a	polynomial	of	degree	2).	We	achieve	this	by	entering:	Derivative[f]	The	green	curve	is	the	first	derivative	curve	(a	parabola,
as	expected):	We	can	trace	the	locus	of	a	point	(B)	moving	on	the	first	derivative	curve,	as	follows:	To	create	the	point	B,	I	entered:	B	=	(x(A),	f'(x(A)))	This	means	the	point	B	will	have	the	same	x-value	as	A	(we	write	this	using	x(A)),	and	the	y-value	will	be	the	same	as	the	y-value	of	the	first	derivative	curve,	which	I	wrote	with	f'(x(A)).	You	can	use
GeoGebra	to	examine	critical	points	like	local	maximums	and	minimums	on	the	curve	and	the	point	of	inflection	(point	A)	illustrated	above.	Other	Tools	GeoGebra	is	a	feature-rich	offering.	The	other	tools	available	in	GeoGebra	that	I	have	not	already	mentioned	include:	Rotate	an	object	around	a	point	Draw	line	segments	Draw	vectors	Draw	polygons
(including	regular	polygons)	Construct	various	circles,	arcs	and	sectors	Angles,	distances	and	areas	You	can	add	text	and	images	You	can	zoom	in	and	out	on	objects	Split	Functions	GeoGebra	will	draw	piece-wise	functions	(with	a	little	coaxing).	You	can	achieve	the	following	(with	a	vector	thrown	in):	Output	I	like	the	variety	of	output	options.	You	can
either:	Save	your	file	for	later	use	(it	will	have	a	.GGB	extension)	Save	the	graph	as	an	image	in	PNG,	EPS,	SVG	or	EMF	format	Save	the	graph	to	the	clipboard	(for	manipulation	in	an	image	editing	program	or	for	pasting	into	a	document)	Save	as	an	interactive	Web	page,	but	this	can	only	be	uploaded	to	GeoGebra	Tube	(not	to	your	hard	drive)
Euclidean	Geometry	GeoGebra	allows	you	to	easily	create	angles,	polygons	and	conics.	As	you	can	see	in	the	regular	dodecagon	above,	GeoGebra	allows	you	to	measure	angles,	including	internal	angles.	Output	and	mobile	apps	There	is	now	a	HTML5	export	option	in	GeoGebra	(so	it	can	be	run	on	Web	pages	without	java)	and	there	are	a	range	of
apps	for	iOS,	Android,	Windows,	Mac,	Chromebook	and	Linux.	3D	Graphs	Geogebra	5	has	3D	graph	capability.	It	has	been	quite	a	wait,	but	it's	been	worth	it.	Here's	a	graph	of	a(x,y)	=	x^2	+	cos(y)	You	can	easily	zoom	in	and	out,	and	rotate	the	graph	left-right	and	up-down	to	see	what	it	looks	like	from	all	angles.	In	2D	graphs,	where	you	can	re-scale
the	graph	by	dragging	either	the	x-	or	y-axis.	However,	this	feature	is	missing	from	3D	graphs	(so	far,	at	least).	Resources	There	is	a	vibrant	GeoGebra	community	that	provides	a	lot	of	free	help	and	resources.	GeoGebraTube	has	thousands	of	ready-made	interactive	files	made	with	GeoGebra.	The	GeoGebra	Forum	has	many	experts	who	are	willing	to
help	with	any	issues	you	face.	Conclusion	GeoGebra	is	an	impressive	geometry	and	calculus	exploratory	tool.	I	tend	to	use	it	as	an	exploratory	tool	when	I	need	something	quick.	It's	a	great	tool,	but	I	tend	to	stick	to	JSXGraph	when	developing	interactive	graphs	of	IntMath.	GeoGebra	is	more	intelligent	than	MS	Math	4.0,	which	I	reviewed	earlier	(it
has	3D	capability	-	see	Microsoft	Math	4.0),	but	the	audience	for	each	product	is	not	exactly	the	same.	Having	the	2	products	will	give	you	some	excellent	tools	for	exploring	mathematics.	Do	yourself	a	favor	-	download	GeoGebra	now!	See	the	4	Comments	below.	Application	that	uses	a	web	browser	as	a	client	This	article	has	multiple	issues.	Please
help	improve	it	or	discuss	these	issues	on	the	talk	page.	(Learn	how	and	when	to	remove	these	messages)	This	article	needs	additional	citations	for	verification.	Please	help	improve	this	article	by	adding	citations	to	reliable	sources.	Unsourced	material	may	be	challenged	and	removed.Find	sources:	"Web	application"	–	news	·	newspapers	·	books	·
scholar	·	JSTOR	(February	2018)	(Learn	how	and	when	to	remove	this	message)	This	article	possibly	contains	original	research.	Please	improve	it	by	verifying	the	claims	made	and	adding	inline	citations.	Statements	consisting	only	of	original	research	should	be	removed.	(May	2022)	(Learn	how	and	when	to	remove	this	message)	This	article	may	need
to	be	rewritten	to	comply	with	Wikipedia's	quality	standards.	You	can	help.	The	talk	page	may	contain	suggestions.	(May	2022)	(Learn	how	and	when	to	remove	this	message)	Screenshot	from	2007	of	Horde,	a	groupware	and	open-source	web	application	A	web	application	(or	web	app)	is	application	software	that	is	created	with	web	technologies	and
runs	via	a	web	browser.[1][2]	Web	applications	emerged	during	the	late	1990s	and	allowed	for	the	server	to	dynamically	build	a	response	to	the	request,	in	contrast	to	static	web	pages.[3]	Web	applications	are	commonly	distributed	via	a	web	server.	There	are	several	different	tier	systems	that	web	applications	use	to	communicate	between	the	web
browsers,	the	client	interface,	and	server	data.	Each	system	has	its	own	uses	as	they	function	in	different	ways.	However,	there	are	many	security	risks	that	developers	must	be	aware	of	during	development;	proper	measures	to	protect	user	data	are	vital.	Web	applications	are	often	constructed	with	the	use	of	a	web	application	framework.	Single-page
applications	(SPAs)	and	progressive	web	apps	(PWAs)	are	two	architectural	approaches	to	creating	web	applications	that	provide	a	user	experience	similar	to	native	apps,	including	features	such	as	smooth	navigation,	offline	support,	and	faster	interactions.	The	concept	of	a	"web	application"	was	first	introduced	in	the	Java	language	in	the	Servlet
Specification	version	2.2,	which	was	released	in	1999.	At	that	time,	both	JavaScript	and	XML	had	already	been	developed,	but	the	XMLHttpRequest	object	had	only	been	recently	introduced	on	Internet	Explorer	5	as	an	ActiveX	object.[citation	needed]	Beginning	around	the	early	2000s,	applications	such	as	"Myspace	(2003),	Gmail	(2004),	Digg	(2004),
[and]	Google	Maps	(2005),"	started	to	make	their	client	sides	more	and	more	interactive.	A	web	page	script	is	able	to	contact	the	server	for	storing/retrieving	data	without	downloading	an	entire	web	page.	The	practice	became	known	as	Ajax	in	2005.	In	earlier	computing	models	like	client-server,	the	processing	load	for	the	application	was	shared
between	code	on	the	server	and	code	installed	on	each	client	locally.	In	other	words,	an	application	had	its	own	pre-compiled	client	program	which	served	as	its	user	interface	and	had	to	be	separately	installed	on	each	user's	personal	computer.	An	upgrade	to	the	server-side	code	of	the	application	would	typically	also	require	an	upgrade	to	the	client-
side	code	installed	on	each	user	workstation,	adding	to	the	support	cost	and	decreasing	productivity.	Additionally,	both	the	client	and	server	components	of	the	application	were	bound	tightly	to	a	particular	computer	architecture	and	operating	system,	which	made	porting	them	to	other	systems	prohibitively	expensive	for	all	but	the	largest
applications.	Later,	in	1995,	Netscape	introduced	the	client-side	scripting	language	called	JavaScript,	which	allowed	programmers	to	add	dynamic	elements	to	the	user	interface	that	ran	on	the	client	side.	Essentially,	instead	of	sending	data	to	the	server	in	order	to	generate	an	entire	web	page,	the	embedded	scripts	of	the	downloaded	page	can
perform	various	tasks	such	as	input	validation	or	showing/hiding	parts	of	the	page.	"Progressive	web	apps",	the	term	coined	by	designer	Frances	Berriman	and	Google	Chrome	engineer	Alex	Russell	in	2015,	refers	to	apps	taking	advantage	of	new	features	supported	by	modern	browsers,	which	initially	run	inside	a	web	browser	tab	but	later	can	run
completely	offline	and	can	be	launched	without	entering	the	app	URL	in	the	browser.	This	section	relies	excessively	on	references	to	primary	sources.	Please	improve	this	section	by	adding	secondary	or	tertiary	sources.	Find	sources:	"Web	application"	–	news	·	newspapers	·	books	·	scholar	·	JSTOR	(November	2022)	(Learn	how	and	when	to	remove
this	message)	Traditional	PC	applications	are	typically	single-tiered,	residing	solely	on	the	client	machine.	In	contrast,	web	applications	inherently	facilitate	a	multi-tiered	architecture.	Though	many	variations	are	possible,	the	most	common	structure	is	the	three-tiered	application.	In	its	most	common	form,	the	three	tiers	are	called	presentation,
application	and	storage.	The	first	tier,	presentation,	refers	to	a	web	browser	itself.	The	second	tier	refers	to	any	engine	using	dynamic	web	content	technology	(such	as	ASP,	CGI,	ColdFusion,	Dart,	JSP/Java,	Node.js,	PHP,	Python	or	Ruby	on	Rails).	The	third	tier	refers	to	a	database	that	stores	data	and	determines	the	structure	of	a	user	interface.
Essentially,	when	using	the	three-tiered	system,	the	web	browser	sends	requests	to	the	engine,	which	then	services	them	by	making	queries	and	updates	against	the	database	and	generates	a	user	interface.	The	3-tier	solution	may	fall	short	when	dealing	with	more	complex	applications,	and	may	need	to	be	replaced	with	the	n-tiered	approach;	the
greatest	benefit	of	which	is	how	business	logic	(which	resides	on	the	application	tier)	is	broken	down	into	a	more	fine-grained	model.[4]	Another	benefit	would	be	to	add	an	integration	tier,	which	separates	the	data	tier	and	provides	an	easy-to-use	interface	to	access	the	data.[4]	For	example,	the	client	data	would	be	accessed	by	calling	a
"list_clients()"	function	instead	of	making	an	SQL	query	directly	against	the	client	table	on	the	database.	This	allows	the	underlying	database	to	be	replaced	without	making	any	change	to	the	other	tiers.[4]	There	are	some	who	view	a	web	application	as	a	two-tier	architecture.	This	can	be	a	"smart"	client	that	performs	all	the	work	and	queries	a
"dumb"	server,	or	a	"dumb"	client	that	relies	on	a	"smart"	server.[4]	The	client	would	handle	the	presentation	tier,	the	server	would	have	the	database	(storage	tier),	and	the	business	logic	(application	tier)	would	be	on	one	of	them	or	on	both.[4]	While	this	increases	the	scalability	of	the	applications	and	separates	the	display	and	the	database,	it	still
does	not	allow	for	true	specialization	of	layers,	so	most	applications	will	outgrow	this	model.[4]	Main	article:	Internet	security	This	section	needs	additional	citations	for	verification.	Please	help	improve	this	article	by	adding	citations	to	reliable	sources	in	this	section.	Unsourced	material	may	be	challenged	and	removed.	(February	2018)	(Learn	how
and	when	to	remove	this	message)	Security	breaches	on	these	kinds	of	applications	are	a	major	concern	because	it	can	involve	both	enterprise	information	and	private	customer	data.	Protecting	these	assets	is	an	important	part	of	any	web	application,	and	there	are	some	key	operational	areas	that	must	be	included	in	the	development	process.[5]	This
includes	processes	for	authentication,	authorization,	asset	handling,	input,	and	logging	and	auditing.	Building	security	into	the	applications	from	the	beginning	is	sometimes	more	effective	and	less	disruptive	in	the	long	run.	Writing	web	applications	is	simplified	with	the	use	of	web	application	frameworks.	These	frameworks	facilitate	rapid	application
development	by	allowing	a	development	team	to	focus	on	the	parts	of	their	application	which	are	unique	to	their	goals	without	having	to	resolve	common	development	issues	such	as	user	management.[6]	In	addition,	there	is	potential	for	the	development	of	applications	on	Internet	operating	systems,	although	currently	there	are	not	many	viable
platforms	that	fit	this	model.[citation	needed]	Internet	portal	Web	API	Software	as	a	service	(SaaS)	Web	2.0	Web	engineering	Web	GIS	Web	services	Web	sciences	Web	widget	^	"Web	app	|	Definition,	History,	Development,	Examples,	Uses,	&	Facts	|	Britannica".	www.britannica.com.	Encyclopædia	Britannica.	Retrieved	4	November	2024.	^	"What	is
a	Web	App?	-	Web	Application	Explained	-	AWS".	Amazon	Web	Services,	Inc.	Retrieved	4	November	2024.	^	"Web	applications".	DocForge.	Archived	from	the	original	on	19	April	2015.	Retrieved	9	November	2024.	^	a	b	c	d	e	f	Petersen,	Jeremy	(4	September	2008).	"Benefits	of	using	the	n-tiered	approach	for	web	applications".	Archived	from	the
original	on	1	December	2017.	Retrieved	24	November	2017.	^	"Top	Tips	for	Secure	App	Development".	Dell.com.	Archived	from	the	original	on	2012-05-22.	Retrieved	2012-06-22.	^	Multiple	(wiki).	"Web	application	framework".	Docforge.	Archived	from	the	original	on	2020-06-20.	Retrieved	2010-03-06.	HTML5	Draft	recommendation,	changes	to
HTML	and	related	APIs	to	ease	authoring	of	web-based	applications.	Web	Applications	Working	Group	at	the	World	Wide	Web	Consortium	(W3C)	PWAs	on	Web.dev	by	Google	Developers.	Retrieved	from	"	2Version	2	of	the	Hypertext	Transfer	Protocol	used	by	the	World	Wide	Web	HTTP/2International	standardRFC	9113Developed
byIETFIntroducedMay	14,	2015;	10	years	ago	(2015-05-14)Superseded	byHTTP/3Website	HTTP/2	(originally	named	HTTP/2.0)	is	a	major	revision	of	the	HTTP	network	protocol	used	by	the	World	Wide	Web.	It	was	derived	from	the	earlier	experimental	SPDY	protocol,	originally	developed	by	Google.[1][2]	HTTP/2	was	developed	by	the	HTTP	Working
Group	(also	called	httpbis,	where	"bis"	means	"twice")	of	the	Internet	Engineering	Task	Force	(IETF).[3][4][5]	HTTP/2	is	the	first	new	version	of	HTTP	since	HTTP/1.1,	which	was	standardized	in	RFC	2068	in	1997.	The	Working	Group	presented	HTTP/2	to	the	Internet	Engineering	Steering	Group	(IESG)	for	consideration	as	a	Proposed	Standard	in
December	2014,[6][7]	and	IESG	approved	it	to	publish	as	Proposed	Standard	on	February	17,	2015	(and	was	updated	in	February	2020	in	regard	to	TLS	1.3	and	again	in	June	2022).	The	initial	HTTP/2	specification	was	published	as	on	May	14,	2015.[8]	The	standardization	effort	was	supported	by	Chrome,	Opera,	Firefox,	Internet	Explorer	11,	Safari,
Amazon	Silk,	and	Edge	browsers.	Most	major	browsers	had	added	HTTP/2	support	by	the	end	of	2015.[9]	About	97%	of	web	browsers	used	have	the	capability	(and	100%	of	"tracked	desktop"	web	browsers).[9]	As	of	July	2023[update],	36%	(after	topping	out	at	just	over	50%)	of	the	top	10	million	websites	support	HTTP/2.[10]	Its	successor	is	HTTP/3,
a	major	revision	that	builds	on	the	concepts	established	by	HTTP/2.[2][11][9][12]	The	working	group	charter	mentions	several	goals	and	issues	of	concern:[4]	Create	a	negotiation	mechanism	that	allows	clients	and	servers	to	elect	to	use	HTTP/1.1,	2.0,	or	potentially	other	non-HTTP	protocols.	Maintain	high-level	compatibility	with	HTTP/1.1	(for
example	with	methods,	status	codes,	URIs,	and	most	header	fields).	Decrease	latency	to	improve	page	load	speed	in	web	browsers	by	considering:	data	compression	of	HTTP	headers	HTTP/2	Server	Push	prioritization	of	requests	multiplexing	multiple	requests	over	a	single	TCP	connection	(fixing	the	HTTP-transaction-level	head-of-line	blocking
problem	in	HTTP	1.x)	Support	common	existing	use	cases	of	HTTP,	such	as	desktop	web	browsers,	mobile	web	browsers,	web	APIs,	web	servers	at	various	scales,	proxy	servers,	reverse	proxy	servers,	firewalls,	and	content	delivery	networks.	The	proposed	changes	do	not	require	any	changes	to	how	existing	web	applications	work,	but	new
applications	can	take	advantage	of	new	features	for	increased	speed.[13]	HTTP/2	leaves	all	of	HTTP/1.1's	high-level	semantics,	such	as	methods,	status	codes,	header	fields,	and	URIs,	the	same.	What	is	new	is	how	the	data	is	framed	and	transported	between	the	client	and	the	server.[13]	Websites	that	are	efficient	minimize	the	number	of	requests
required	to	render	an	entire	page	by	minifying	(reducing	the	amount	of	code	and	packing	smaller	pieces	of	code	into	bundles,	without	reducing	its	ability	to	function)	resources	such	as	images	and	scripts.	However,	minification	is	not	necessarily	convenient	nor	efficient	and	may	still	require	separate	HTTP	connections	to	get	the	page	and	the	minified
resources.	HTTP/2	allows	the	server	to	"push"	content,	that	is,	to	respond	with	data	for	more	queries	than	the	client	requested.	This	allows	the	server	to	supply	data	it	knows	a	web	browser	will	need	to	render	a	web	page,	without	waiting	for	the	browser	to	examine	the	first	response,	and	without	the	overhead	of	an	additional	request	cycle.[14]
Additional	performance	improvements	in	the	first	draft	of	HTTP/2	(which	was	a	copy	of	SPDY)	come	from	multiplexing	of	requests	and	responses	to	avoid	some	of	the	head-of-line	blocking	problem	in	HTTP	1	(even	when	HTTP	pipelining	is	used),	header	compression,	and	prioritization	of	requests.[15]	However,	as	HTTP/2	runs	on	top	of	a	single	TCP
connection	there	is	still	potential	for	head-of-line	blocking	to	occur	if	TCP	packets	are	lost	or	delayed	in	transmission.[16]	HTTP/2	no	longer	supports	HTTP/1.1's	chunked	transfer	encoding	mechanism,	as	it	provides	its	own,	more	efficient,	mechanisms	for	data	streaming.[17]	SPDY	(pronounced	like	"speedy")	was	a	previous	HTTP-replacement
protocol	developed	by	a	research	project	spearheaded	by	Google.[18]	Primarily	focused	on	reducing	latency,	SPDY	uses	the	same	TCP	pipe	but	different	protocols	to	accomplish	this	reduction.	The	basic	changes	made	to	HTTP/1.1	to	create	SPDY	included	"true	request	pipelining	without	FIFO	restrictions,	message	framing	mechanism	to	simplify	client
and	server	development,	mandatory	compression	(including	headers),	priority	scheduling,	and	even	bi-directional	communication".[19]	The	HTTP	Working	Group	considered	Google's	SPDY	protocol,	Microsoft's	HTTP	Speed+Mobility	proposal	(SPDY	based),[18]	and	Network-Friendly	HTTP	Upgrade.[20]	In	July	2012,	Facebook	provided	feedback	on
each	of	the	proposals	and	recommended	HTTP/2	be	based	on	SPDY.[21]	The	initial	draft	of	HTTP/2	was	published	in	November	2012	and	was	based	on	a	straight	copy	of	SPDY.[22]	The	biggest	difference	between	HTTP/1.1	and	SPDY	was	that	each	user	action	in	SPDY	is	given	a	"stream	ID",	meaning	there	is	a	single	TCP	channel	connecting	the	user
to	the	server.	SPDY	split	requests	into	either	control	or	data,	using	a	"simple	to	parse	binary	protocol	with	two	types	of	frames".[19][23]	SPDY	showed	evident	improvement	over	HTTP,	with	a	new	page	load	speedup	ranging	from	11%	to	47%.[24]	The	development	of	HTTP/2	used	SPDY	as	a	jumping-off	point.	Among	the	many	detailed	differences
between	the	protocols,	the	most	notable	is	that	HTTP/2	uses	a	fixed	Huffman	code-based	header	compression	algorithm,	instead	of	SPDY's	dynamic	stream-based	compression.	This	helps	to	reduce	the	potential	for	compression	oracle	attacks	on	the	protocol,	such	as	the	CRIME	attack.[23]	On	February	9,	2015,	Google	announced	plans	to	remove
support	for	SPDY	in	Chrome	in	favor	of	support	for	HTTP/2.[25]	This	took	effect	starting	with	Chrome	51.[26][27]	Date	Milestone[4]	December	20,	2007[28][29]	First	HTTP/1.1	Revision	Internet	Draft	January	23,	2008[30]	First	HTTP	Security	Properties	Internet	Draft	Early	2012[31]	Call	for	Proposals	for	HTTP	2.0	October	14	–	November	25,
2012[32][33]	Working	Group	Last	Call	for	HTTP/1.1	Revision	November	28,	2012[34][35]	First	WG	draft	of	HTTP	2.0,	based	upon	draft-mbelshe-httpbis-spdy-00	Held/Eliminated	Working	Group	Last	Call	for	HTTP	Security	Properties	September	2013[36][37]	Submit	HTTP/1.1	Revision	to	IESG	for	consideration	as	a	Proposed	Standard	February	12,
2014[38]	IESG	approved	HTTP/1.1	Revision	to	publish	as	a	Proposed	Standard	June	6,	2014[28][39]	Publish	HTTP/1.1	Revision	as	RFC	7230,	7231,	7232,	7233,	7234,	7235	August	1,	2014	–	September	1,	2014[7][40]	Working	Group	Last	call	for	HTTP/2	December	16,	2014[6]	Submit	HTTP/2	to	IESG	for	consideration	as	a	Proposed	Standard	December
31,	2014	–	January	14,	2015[41]	IETF	Last	Call	for	HTTP/2	January	22,	2015[42]	IESG	telechat	to	review	HTTP/2	as	Proposed	Standard	February	17,	2015[43]	IESG	approved	HTTP/2	to	publish	as	Proposed	Standard	May	14,	2015[44]	Publish	HTTP/2	as	RFC	7540	February	2020	RFC	8740:	HTTP/2	with	TLS	1.3	June	2022	RFC	9113:	Further
refinements	April	2024	DOS	issues	with	CONTINUATION	frames	HTTP/2	is	defined	both	for	HTTP	URIs	(i.e.	without	TLS	encryption,	a	configuration	which	is	abbreviated	in	h2c)	and	for	HTTPS	URIs	(over	TLS	using	ALPN	extension[45]	where	TLS	1.2	or	newer	is	required,	a	configuration	which	is	abbreviated	in	h2).	Although	the	standard	itself	does
not	require	usage	of	encryption,[46]	all	major	client	implementations	(Firefox,[47]	Chrome,	Safari,	Opera,	IE,	Edge)	have	stated	that	they	will	only	support	HTTP/2	over	TLS,	which	makes	encryption	de	facto	mandatory.[48]	The	FreeBSD	and	Varnish	developer	Poul-Henning	Kamp	asserts	that	the	standard	was	prepared	on	an	unrealistically	short
schedule,	ruling	out	any	basis	for	the	new	HTTP/2	other	than	the	SPDY	protocol	and	resulting	in	other	missed	opportunities	for	improvement.	Kamp	criticizes	the	protocol	itself	for	being	inconsistent	and	having	needless,	overwhelming	complexity.	He	also	states	that	the	protocol	violates	the	protocol	layering	principle,	for	example	by	duplicating	flow
control	that	belongs	in	the	transport	layer	(TCP).	He	also	suggested	that	the	new	protocol	should	have	removed	HTTP	Cookies,	introducing	a	breaking	change.[49]	Initially,	some	members[who?]	of	the	Working	Group	tried	to	introduce	an	encryption	requirement	in	the	protocol.	This	faced	criticism.	Critics	stated	that	encryption	has	non-negligible
computing	costs	and	that	many	HTTP	applications	actually	have	no	need	for	encryption	and	their	providers	have	no	desire	to	spend	additional	resources	on	it.	Encryption	proponents	have	stated	that	this	encryption	overhead	is	negligible	in	practice.[50]	Poul-Henning	Kamp	has	criticized	the	IETF	for	hastily	standardizing	Google's	SPDY	prototype	as
HTTP/2	due	to	political	considerations.[49][51][52]	The	criticism	of	the	agenda	of	mandatory	encryption	within	the	existing	certificate	framework	is	not	new,	nor	is	it	unique	to	members	of	the	open-source	community	–	a	Cisco	employee	stated	in	2013	that	the	present	certificate	model	is	not	compatible	with	small	devices	like	routers,	because	the
present	model	requires	not	only	annual	enrollment	and	remission	of	non-trivial	fees	for	each	certificate,	but	must	be	continually	repeated	on	an	annual	basis.[53]	In	the	end	the	Working	Group	did	not	reach	consensus	over	the	mandatory	encryption,[46]	although	most	client	implementations	require	it,	which	makes	encryption	a	de	facto	requirement.
The	HTTP/2	protocol	also	faced	criticism	for	not	supporting	opportunistic	encryption,	a	measure	against	passive	monitoring	similar	to	the	STARTTLS	mechanism	that	has	long	been	available	in	other	Internet	protocols	like	SMTP.	Critics	have	stated	that	the	HTTP/2	proposal	goes	in	violation	of	IETF's	own	RFC	7258	"Pervasive	Monitoring	Is	an	Attack",
which	also	has	a	status	of	Best	Current	Practice	188.[54]	RFC7258/BCP188	mandates	that	passive	monitoring	be	considered	as	an	attack,	and	protocols	designed	by	IETF	should	take	steps	to	protect	against	passive	monitoring	(for	example,	through	the	use	of	opportunistic	encryption).	A	number	of	specifications	for	opportunistic	encryption	of	HTTP/2
have	been	provided,[55][56][57]	of	which	draft-nottingham-http2-encryption	was	adopted	as	an	official	work	item	of	the	working	group,	leading	to	the	publication	of	RFC	8164	in	May	2017.	Although	the	design	of	HTTP/2	effectively	addresses	the	HTTP-transaction-level	head-of-line	blocking	problem	by	allowing	multiple	concurrent	HTTP	transactions,
all	those	transactions	are	multiplexed	over	a	single	TCP	connection,	meaning	that	any	packet-level	head-of-line	blocking	of	the	TCP	stream	simultaneously	blocks	all	transactions	being	accessed	via	that	connection.	This	head-of-line	blocking	in	HTTP/2	is	now	widely	regarded	as	a	design	flaw,	and	much	of	the	effort	behind	QUIC	and	HTTP/3	has	been
devoted	to	reduce	head-of-line	blocking	issues.[58][59]	Main	article:	Comparison	of	web	server	software	The	following	web	servers	support	HTTP/2:	Apache	httpd	2.4.12	supports	HTTP/2	via	the	module	mod_h2,[60]	although	appropriate	patches	must	be	applied	to	the	source	code	of	the	server	in	order	for	it	to	support	that	module.	As	of	Apache
2.4.17	all	patches	are	included	in	the	main	Apache	source	tree,	although	the	module	itself	was	renamed	mod_http2.[61]	Old	versions	of	SPDY	were	supported	via	the	module	mod_spdy,[62]	however	the	development	of	the	mod_spdy	module	has	stopped.[63]	Apache	Tomcat	8.5	(requires	a	configuration	change)[64]	Apache	Traffic	Server[65]	Caddy[66]
Charles	Proxy	since	version	Charles	4.[67]	Citrix	NetScaler	11.x[68]	Sucuri[69]	F5	BIG-IP	Local	Traffic	Manager	11.6[70]	Barracuda	Networks	WAF	(Web	Application	Firewall)[71]	h2o	(built	from	the	ground	up	for	HTTP/2	support)[72]	HAProxy	1.8[73]	Jetty	9.3[74]	lighttpd	1.4.56[75]	LiteSpeed	Web	Server	5.0[76]	Microsoft	IIS	(in	Windows	10,[77]
Windows	Server	2016,	and	Windows	Server	2019)	Netty	4.1[78]	nghttpd	(exclusively	implements	HTTP/2)	nginx	1.9.5[79]	released	on	September	22,	2015,	using	module	ngx_http_v2_module	and	HTTP/2	Server	Push	since	version	1.13.9	on	February	20,	2018.[80]	Node.js	8.13.0[81]	(A	separate	module	is	available	for	Node.js	5.0[82]	and	Node	8.4
introduced	experimental	built-in	support	for	HTTP/2.[83])	Kestrel	web	server	for	ASP.NET	Core	supports	HTTP/2	since	.NET	Core	2.2.0-preview	1.[84]	OpenLiteSpeed	1.3.11	and	1.4.8[85]	Proxygen	Pulse	Secure	Virtual	Traffic	Manager	10.2[86]	Radware	Alteon	NG[87]	ShimmerCat[88]	Vert.x	3.3	Warp	(Haskell	web	server,	used	by	default	in	Yesod)
Wildfly	9	Envoy	proxy	Akamai	was	the	first	major	CDN	to	support	HTTP/2	and	HTTP/2	Server	Push.	Microsoft	Azure	supports	HTTP/2.	PageCDN	supports	HTTP/2	out	of	the	box	and	provides	user-interface	to	setup	HTTP/2	Server	Push	in	CDN	dashboard.[89]	CDN77	supports	HTTP/2	using	nginx	(August	20,	2015).	Cloudflare	supports	HTTP/2	using
nginx	with	SPDY	as	a	fallback	for	browsers	without	support,	whilst	maintaining	all	security	and	performance	services.[90]	Cloudflare	was	the	first	major	CDN	to	support	HTTP/2	Server	Push.[91]	AWS	CloudFront	supports	HTTP/2[92]	since	September	7,	2016.	Fastly	supports	HTTP/2	including	Server	Push.[93]	Imperva	Incapsula	CDN	supports
HTTP/2.[94]	The	implementation	includes	support	for	WAF	and	DDoS	mitigation	features	as	well.	KeyCDN	supports	HTTP/2	using	nginx	(October	6,	2015).	HTTP/2	Test	is	a	test	page	to	verify	if	your	server	supports	HTTP/2.	BrandSSL	supports	HTTP/2.	Voxility	supports	HTTP/2	using	nginx	since	July,	2016.	The	implementation	comes	in	support	for
Cloud	DDoS	mitigation	services.[95]	StackPath	supports	HTTP/2.	Other	implementations	are	collected	on	the	GitHub	HTTP/2	wiki.	gRPC	HTTP	pipelining	HTTP	request	and	response	messages	HTTP/3	QUIC	SPDY	WebSocket	Web	Server	Web	Browser	Comparison	of	web	browsers	§	Protocol	support	^	Bright,	Peter	(February	18,	2015).	"HTTP/2
finished,	coming	to	browsers	within	weeks".	Ars	Technica.	Archived	from	the	original	on	March	30,	2019.	^	a	b	Cimpanu,	Catalin	(November	12,	2018).	"HTTP-over-QUIC	to	be	renamed	HTTP/3".	ZDNet.	Retrieved	November	19,	2018.	^	Thomson,	M.;	Belshe,	M.;	Peon,	R.	(November	29,	2014).	"Hypertext	Transfer	Protocol	version	2:	draft-ietf-httpbis-
http2-16".	Ietf	Datatracker.	HTTPbis	Working	Group.	Retrieved	February	11,	2015.	^	a	b	c	"HTTP	(httpbis)".	Internet	Engineering	Task	Force	Datatracker.	Archived	from	the	original	on	January	6,	2024.	^	"IETF	HTTP	Working	Group".	httpwg.org.	Retrieved	December	15,	2019.	^	a	b	"History	for	draft-ietf-httpbis-http2-16".	IETF.	Retrieved	January	3,
2015.	2014-12-16	IESG	state	changed	to	Publication	Requested	^	a	b	Raymor,	Brian	(August	6,	2014).	"Wait	for	it	–	HTTP/2	begins	Working	Group	Last	Call!".	Microsoft	Open	Technologies.	Archived	from	the	original	on	October	6,	2014.	Retrieved	October	17,	2018.	^	Belshe,	M.;	Peon,	R.;	Thomson,	M.	(May	2015).	Thomson,	M	(ed.).	"RFC	7540	-
Hypertext	Transfer	Protocol	Version	2	(HTTP/2)".	IETF.	doi:10.17487/RFC7540.	Retrieved	May	14,	2015.	^	a	b	c	""HTTP/2"	|	Can	I	use...	Support	tables	for	HTML5,	CSS3,	etc".	canIuse.com.	Retrieved	April	3,	2023.	^	"Usage	of	HTTP/2	for	websites".	World	Wide	Web	Technology	Surveys.	W3Techs.	Retrieved	July	10,	2023.	^	Bishop,	Mike	(July	9,
2019).	"Hypertext	Transfer	Protocol	Version	3	(HTTP/3)".	Ietf	Datatracker.	Retrieved	July	31,	2019.	^	Cimpanu,	Catalin	(26	September	2019).	"Cloudflare,	Google	Chrome,	and	Firefox	add	HTTP/3	support".	ZDNet.	Retrieved	27	September	2019.	^	a	b	Ilya	Grigorik.	"Chapter	12:	HTTP	2.0".	High	Performance	Browser	Networking.	O'Reilly	Media,	Inc.
HTTP/2	does	not	modify	the	application	semantics	of	HTTP	in	any	way	^	Pratt,	Michael.	"Apiux".	apiux.com.	Retrieved	March	19,	2014.	^	Dio	Synodinos	(November	2012).	"HTTP	2.0	First	Draft	Published".	InfoQ.com.	C4Media	Inc.	^	Javier	Garza	(October	2017).	"How	does	HTTP/2	solve	the	Head	of	Line	blocking	(HOL)	issue".	^	Belshe,	Mike;
Thomson,	Martin;	Peon,	Roberto	(May	2015).	Thomson,	M.	(ed.).	"Hypertext	Transfer	Protocol	Version	2	(HTTP/2)".	tools.ietf.org.	doi:10.17487/RFC7540.	Retrieved	November	17,	2017.	HTTP/2	uses	DATA	frames	to	carry	message	payloads.	The	"chunked"	transfer	encoding	defined	in	Section	4.1	of	[RFC7230]	MUST	NOT	be	used	in	HTTP/2	^	a	b
Sebastian	Anthony	(March	28,	2012).	"S&M	vs.	SPDY:	Microsoft	and	Google	battle	over	the	future	of	HTTP	2.0".	ExtremeTech.	^	a	b	Grigorik,	Ilya.	"Life	beyond	HTTP	1.1:	Google's	SPDY".	^	Willy	Tarreau;	Amos	Jeffries;	Adrien	de	Croy;	Poul-Henning	Kamp	(March	29,	2012).	"Proposal	for	a	Network-Friendly	HTTP	Upgrade".	Network	Working	Group.
Internet	Engineering	Task	Force.	^	Doug	Beaver	(July	15,	2012).	"HTTP2	Expression	of	Interest"	(mailing	list).	W3C.	^	Dio	Synodinos	(November	30,	2012).	"HTTP/2	First	Draft	Published".	InfoQ.	^	a	b	Ilya,	Grigorik	(2015).	HTTP/2	:	a	new	excerpt	from	high	performance	browser	networking	(May	2015,	First	ed.).	Sebastopol,	Calif.:	O'Reilly	Media.
pp.	211–224.	ISBN	9781491932483.	OCLC	1039459460.	^	"SPDY:	An	experimental	protocol	for	a	faster	web".	The	Chromium	Projects.	^	Chris	Bentzel;	Bence	Béky	(February	9,	2015).	"Hello	HTTP/2,	Goodbye	SPDY".	Chromium	Blog.	Update:	To	better	align	with	Chrome's	release	cycle,	SPDY	and	NPN	support	will	be	removed	with	the	release	of
Chrome	51.	^	"API	Deprecations	and	Removals	in	Chrome	51".	TL;DR:	Support	for	HTTP/2	is	widespread	enough	that	SPDY/3.1	support	can	be	dropped.	^	Shadrin,	Nick	(June	7,	2016).	"Supporting	HTTP/2	for	Google	Chrome	Users	|	NGINX".	NGINX.	Retrieved	July	10,	2017.	^	a	b	Nottingham,	Mark	(June	7,	2014).	"RFC2616	is	Dead".	Retrieved
September	20,	2014.	^	"HTTP/1.1,	part	1:	URIs,	Connections,	and	Message	Parsing:	draft-ietf-httpbis-p1-messaging-00".	December	20,	2007.	Retrieved	September	20,	2014.	^	"Security	Requirements	for	HTTP:	draft-ietf-httpbis-security-properties-00.txt".	January	23,	2008.	Retrieved	September	20,	2014.	^	Nottingham,	Mark	(January	24,	2012).
"Rechartering	HTTPbis".	Retrieved	September	20,	2014.	^	Nottingham,	Mark	(October	14,	2012).	"Working	Group	Last	Call	for	HTTP/1.1	p1	and	p2".	Retrieved	September	20,	2014.	^	Nottingham,	Mark	(October	23,	2012).	"Second	Working	Group	Last	Call	for	HTTP/1.1	p4	to	p7".	Retrieved	September	20,	2014.	^	"SPDY	Protocol:	draft-ietf-httpbis-
http2-00".	HTTPbis	Working	Group.	November	28,	2012.	Retrieved	September	20,	2014.	^	Nottingham,	Mark	(November	30,	2012).	"First	draft	of	HTTP/2".	Retrieved	September	20,	2014.	^	Fielding,	Roy	T.;	Reschke,	Julian	(June	6,	2014).	"Hypertext	Transfer	Protocol	(HTTP/1.1):	Message	Syntax	and	Routing".	Archived	from	the	original	on	August
13,	2014.	Retrieved	September	20,	2014.	^	"Last	Call:	(Hypertext	Transfer	Protocol	(HTTP/1.1):	Message	Syntax	and	Routing)	to	Proposed	Standard".	The	IESG.	October	21,	2013.	Retrieved	September	20,	2014.	^	"Protocol	Action:	'Hypertext	Transfer	Protocol	(HTTP/1.1):	Message	Syntax	and	Routing'	to	Proposed	Standard	(draft-ietf-httpbis-p1-
messaging-26.txt)".	ietf-announce	(Mailing	list).	The	IESG.	February	12,	2014.	Retrieved	January	18,	2015.	^	The	RFC	Editor	Team	(June	6,	2014).	"RFC	7230	on	Hypertext	Transfer	Protocol	(HTTP/1.1):	Message	Syntax	and	Routing".	ietf-announce	(Mailing	list).	Retrieved	January	18,	2015.	^	Nottingham,	Mark	(August	1,	2014).	"Working	Group	Last
Call:	draft-ietf-httpbis-http2-14	and	draft-ietf-httpbis-header-compression-09".	HTTP	Working	Group.	Retrieved	September	7,	2014.	^	"Last	Call:	(Hypertext	Transfer	Protocol	version	2)	to	Proposed	Standard	from	The	IESG	on	2014-12-31".	Internet	Engineering	Task	Force.	2014.	Retrieved	January	1,	2015.	^	"IESG	Agenda:	2015-01-22".	IETF.
Archived	from	the	original	on	January	15,	2015.	Retrieved	January	15,	2015.	^	The	IESG	(February	17,	2015).	"Protocol	Action:	'Hypertext	Transfer	Protocol	version	2'	to	Proposed	Standard	(draft-ietf-httpbis-http2-17.txt)".	httpbis	(Mailing	list).	Retrieved	February	18,	2015.	^	The	RFC	Editor	Team	(May	14,	2015).	"RFC	7540	on	Hypertext	Transfer
Protocol	Version	2	(HTTP/2)".	ietf-announce	(Mailing	list).	^	Friedl,	S.;	Popov,	A.;	Langley,	A.;	Stephan,	E.	(July	2014).	"RFC	7301	-	Transport	Layer	Security	(TLS)	Application-Layer	Protocol	Negotiation	Extension".	IETF.	doi:10.17487/RFC7301.	^	a	b	"HTTP/2	Frequently	Asked	Questions".	IETF	HTTP	Working	Group.	Retrieved	September	8,	2014.	^
"Networking/http2".	MozillaWiki.	Retrieved	September	7,	2014.	^	"HTTP/2	Implementation	Status".	mnot’s	blog.	^	a	b	Kamp,	Poul-Henning	(January	6,	2015).	"HTTP/2.0	–	The	IETF	is	Phoning	It	In	(Bad	protocol,	bad	politics)".	ACM	Queue.	Vol.	13,	no.	2.	pp.	10–12.	doi:10.1145/2732266.2716278.	ISSN	1542-7730.	^	Grigorik,	Ilya.	"Is	TLS	Fast	Yet?".
Retrieved	December	30,	2015.	^	Kamp,	Poul-Henning	(2015).	"Http/2.0".	Communications	of	the	ACM.	58	(3):	40.	doi:10.1145/2717515.	S2CID	20337779.	^	Kamp,	Poul-Henning	(January	7,	2015).	"Re:	Last	Call:	(Hypertext	Transfer	Protocol	version	2)	to	Proposed	Standard".	ietf-http-wg@w3.org	(Mailing	list).	Retrieved	January	12,	2015.	^	Lear,
Eliot	(August	25,	2013).	"Mandatory	encryption	*is*	theater".	ietf-http-wg@w3.org	(Mailing	list).	Retrieved	January	26,	2015.	^	Murenin,	Constantine	A.	(January	9,	2015).	"Re:	Last	Call:	(Hypertext	Transfer	Protocol	version	2)	to	Proposed	Standard".	ietf-http-wg@w3.org	(Mailing	list).	Retrieved	January	12,	2015.	^	Paul	Hoffman.	"Minimal
Unauthenticated	Encryption	(MUE)	for	HTTP-2:	draft-hoffman-httpbis-minimal-unauth-enc-01".	Internet	Engineering	Task	Force.	^	Mark	Nottingham;	Martin	Thomson.	"Opportunistic	Encryption	for	HTTP	URIs:	draft-nottingham-http2-encryption-03".	Internet	Engineering	Task	Force.	^	Mark	Nottingham;	Martin	Thomson.	"Opportunistic	Security	for
HTTP:	draft-ietf-httpbis-http2-encryption-01".	Ietf	Datatracker.	Internet	Engineering	Task	Force.	^	Huston,	Geoff	(March	4,	2019).	"A	Quick	Look	at	QUIC".	www.circleid.com.	Retrieved	August	2,	2019.	^	Gal,	Shauli	(June	22,	2017).	"The	Full	Picture	on	HTTP/2	and	HOL	Blocking".	Medium.	Retrieved	August	3,	2019.	^	"http/2	module	for	apache
httpd".	Retrieved	July	28,	2015.	^	"Apache	2.4.17	release	changelog".	Retrieved	August	22,	2017.	^	Matthew	Steele	(June	19,	2014).	"mod_spdy	is	now	an	Apache	project".	Google	Developers	Blog.	^	"Log	of	/httpd/mod_spdy".	svn.apache.org.	Retrieved	February	3,	2017.	^	"Apache	Tomcat	Migration".	Retrieved	July	29,	2016.	^	"Apache	Traffic	Server
Downloads".	trafficserver.apache.org.	September	21,	2015.	^	Server,	Caddy	Web	(March	23,	2016).	"Caddy	2	-	The	Ultimate	Server	with	Automatic	HTTPS".	caddyserver.com.	Retrieved	August	8,	2020.	^	"Charles	4	has	HTTP/2".	Public	Object.	August	2,	2016.	Retrieved	October	12,	2020.	^	"3	Simple	Steps	to	Bring	HTTP/2	Performance	to	Legacy
Web	Applications".	September	22,	2015.	^	"Sucuri	+=	HTTP/2	—	Announcing	HTTP/2	Support".	Sucuri.	November	27,	2015.	Retrieved	December	5,	2015.	^	Robert	Haynes.	"Goodbye	SPDY,	Hello	HTTP/2".	F5	Networks.	Retrieved	September	18,	2015.	^	Risov	Chakrabortty	(July	5,	2016).	"New	features,	capabilities	added	to	Barracuda	Web
Application	Firewall".	Barracuda	Networks.	^	"H2O	-	the	optimized	HTTP/2	server".	h2o.examp1e.net.	^	"What's	New	in	HAProxy	1.8".	haproxy.com.	November	2017.	Retrieved	February	9,	2018.	^	"Jetty	change	log".	Eclipse	Foundation.	May	28,	2015.	Retrieved	May	28,	2015.	^	"Feature	#2813:	Support	for	HTTP/2	protocol",	Lighttpd	^	"LSWS	5.0
Is	Out	–	Support	for	HTTP/2,	ESI,	LiteMage	Cache".	April	17,	2015.	^	Rob	Trace;	David	Walp	(October	8,	2014).	"HTTP/2:	The	Long-Awaited	Sequel".	MSDN	IEBlog.	Microsoft	Corporation.	^	"Netty.news:	Netty	4.1.0.Final	released".	netty.io.	Retrieved	June	1,	2016.	^	"nginx	changelog".	www.nginx.com.	September	22,	2015.	^	"Changes	with	nginx
1.14.2".	nginx.org.	December	4,	2018.	Retrieved	September	27,	2019.	^	Foundation,	Node	js	(November	20,	2018).	"Node	v8.13.0	(LTS)".	Node.js.	Retrieved	June	5,	2019.	^	"Node	http2".	www.github.com.	July	26,	2016.	^	"Node	v8.4.0	(Current)".	nodejs.org.	August	15,	2017.	^	"ASP.NET	Core	2.2.0-preview1:	HTTP/2	in	Kestrel".	Retrieved	April	6,
2021.	^	"OpenLiteSpeed	1.4.5	change	log".	LiteSpeed	Technologies,	Inc.	February	26,	2015.	Retrieved	February	26,	2015.	^	"Pulse	Virtual	Traffic	Manager".	August	22,	2017.	^	"Radware	Combines	an	Integrated	HTTP/2	Gateway	with	its	Leading	Fastview	Technology	to	Provide	Web	Server	Platforms	Increased	Acceleration".	July	20,	2015.	^
"www.shimmercat.com".	March	23,	2016.	Archived	from	the	original	on	March	31,	2022.	Retrieved	March	23,	2016.	^	"Why	PageCDN,	and	what	problem	does	it	solve?".	PageCDN.	Retrieved	January	11,	2020.	^	"HTTP/2	is	here!	Goodbye	SPDY?	Not	quite	yet".	CloudFlare.	Retrieved	December	5,	2015.	^	Krasnov,	Vlad	(April	28,	2016).	"Announcing
Support	for	HTTP/2	Server	Push".	CloudFlare.	Retrieved	May	18,	2016.	^	"Amazon	CloudFront	now	supports	HTTP/2".	Amazon	Web	Services,	Inc.	Retrieved	September	8,	2016.	^	"Announcing	Limited	Availability	for	HTTP/2".	June	30,	2016.	Retrieved	August	22,	2017.	^	"HTTP/2	is	here:	What	You	Need	to	Know".	Retrieved	November	1,	2015.	^
"HTTP/2	more	at	risk	to	cyber	attacks?".	Information	Age.	August	3,	2016.	Retrieved	February	4,	2019.	Official	website	HTTP/2	on	GitHub	RFC	7540	–	Hypertext	Transfer	Protocol	version	2	(HTTP/2)	RFC	7541	–	HPACK:	Header	Compression	for	HTTP/2	HTTP/2	explained	(Daniel	Stenberg)	SPDY	Protocol	(draft-mbelshe-httpbis-spdy-00)	HTTP
Speed+Mobility	(draft-Montenegro-httpbis-speed-mobility-01)	Proposal	for	a	Network-Friendly	HTTP	Upgrade	(draft-tarreau-httpbis-network-friendly-00)	Retrieved	from	"	3Layer	7	network	protocol	published	in	2022	HTTP/3International	standardRFC	9114[1]	(HTTP/3	also	uses	the	completed	QUIC	protocol	described	in	RFC	9000	and	related	RFCs
such	as	RFC	9001)Developed	byIETFIntroducedJune	2022Website	Internet	history	timeline	Early	research	and	development:	1960–1964:	RAND	networking	concepts	developed	1962–1964:	ARPA	networking	ideas	1965	(1965):	NPL	network	concepts	conceived	1966	(1966):	Merit	Network	founded	1967	(1967):	ARPANET	planning	begins	1967	(1967):
Symposium	on	Operating	Systems	Principles	1969	(1969):	NPL	followed	by	the	ARPANET	carry	their	first	packets	1970	(1970):	Network	Information	Center	(NIC)	1971	(1971):	Tymnet	switched-circuit	network	1972	(1972):	Merit	Network's	packet-switched	network	operational	1972	(1972):	Internet	Assigned	Numbers	Authority	(IANA)	established
1973	(1973):	CYCLADES	network	demonstrated	1973	(1973):	PARC	Universal	Packet	development	begins	1974	(1974):	Transmission	Control	Program	specification	published	1975	(1975):	Telenet	commercial	packet-switched	network	1976	(1976):	X.25	protocol	approved	and	deployed	on	public	data	networks	1978	(1978):	Minitel	introduced
1979	(1979):	Internet	Activities	Board	(IAB)	1980	(1980):	USENET	news	using	UUCP	1980	(1980):	Ethernet	standard	introduced	1981	(1981):	BITNET	established	Merging	the	networks	and	creating	the	Internet:	1981	(1981):	Computer	Science	Network	(CSNET)	1982	(1982):	TCP/IP	protocol	suite	formalized	1982	(1982):	Simple	Mail	Transfer
Protocol	(SMTP)	1983	(1983):	Domain	Name	System	(DNS)	1983	(1983):	MILNET	split	off	from	ARPANET	1984	(1984):	OSI	Reference	Model	released	1985	(1985):	First	.COM	domain	name	registered	1986	(1986):	NSFNET	with	56	kbit/s	links	1986	(1986):	Internet	Engineering	Task	Force	(IETF)	1987	(1987):	UUNET	founded	1988	(1988):	NSFNET
upgraded	to	1.5	Mbit/s	(T1)	1988	(1988):	Morris	worm	1988	(1988):	Complete	Internet	protocol	suite	1989	(1989):	Border	Gateway	Protocol	(BGP)	1989	(1989):	PSINet	founded,	allows	commercial	traffic	1989	(1989):	Federal	Internet	Exchanges	(FIX	East|FIXes)	1990	(1990):	GOSIP	(without	TCP/IP)	1990	(1990):	ARPANET	decommissioned
1990	(1990):	Advanced	Network	and	Services	(ANS)	1990	(1990):	UUNET/Alternet	allows	commercial	traffic	1990	(1990):	Archie	search	engine	1991	(1991):	Wide	area	information	server	(WAIS)	1991	(1991):	Gopher	1991	(1991):	Commercial	Internet	eXchange	(CIX)	1991	(1991):	ANS	CO+RE	allows	commercial	traffic	1991	(1991):	World	Wide	Web
(WWW)	1992	(1992):	NSFNET	upgraded	to	45	Mbit/s	(T3)	1992	(1992):	Internet	Society	(ISOC)	established	1993	(1993):	Classless	Inter-Domain	Routing	(CIDR)	1993	(1993):	InterNIC	established	1993	(1993):	AOL	added	USENET	access	1993	(1993):	Mosaic	web	browser	released	1994	(1994):	Full	text	web	search	engines	1994	(1994):	North
American	Network	Operators'	Group	(NANOG)	established	Commercialization,	privatization,	broader	access	leads	to	the	modern	Internet:	1995	(1995):	New	Internet	architecture	with	commercial	ISPs	connected	at	NAPs	1995	(1995):	NSFNET	decommissioned	1995	(1995):	GOSIP	updated	to	allow	TCP/IP	1995	(1995):	very	high-speed	Backbone
Network	Service	(vBNS)	1995	(1995):	IPv6	proposed	1996	(1996):	AOL	changes	pricing	model	from	hourly	to	monthly	1998	(1998):	Internet	Corporation	for	Assigned	Names	and	Numbers	(ICANN)	1999	(1999):	IEEE	802.11b	wireless	networking	1999	(1999):	Internet2/Abilene	Network	1999	(1999):	vBNS+	allows	broader	access	2000	(2000):	Dot-
com	bubble	bursts	2001	(2001):	New	top-level	domain	names	activated	2001	(2001):	Code	Red	I,	Code	Red	II,	and	Nimda	worms	2003	(2003):	UN	World	Summit	on	the	Information	Society	(WSIS)	phase	I	2003	(2003):	National	LambdaRail	founded	2004	(2004):	UN	Working	Group	on	Internet	Governance	(WGIG)	2005	(2005):	UN	WSIS	phase	II
2006	(2006):	First	meeting	of	the	Internet	Governance	Forum	2010	(2010):	First	internationalized	country	code	top-level	domains	registered	2012	(2012):	ICANN	begins	accepting	applications	for	new	generic	top-level	domain	names	2013	(2013):	Montevideo	Statement	on	the	Future	of	Internet	Cooperation	2014	(2014):	NetMundial	international
Internet	governance	proposal	2016	(2016):	ICANN	contract	with	U.S.	Dept.	of	Commerce	ends,	IANA	oversight	passes	to	the	global	Internet	community	on	October	1st	Examples	of	Internet	services:	1989	(1989):	AOL	dial-up	service	provider,	email,	instant	messaging,	and	web	browser	1990	(1990):	IMDb	Internet	movie	database	1994	(1994):	Yahoo!
web	directory	1995	(1995):	Amazon	online	retailer	1995	(1995):	eBay	online	auction	and	shopping	1995	(1995):	Craigslist	classified	advertisements	1995	(1995):	AltaVista	search	engine	1996	(1996):	Outlook	(formerly	Hotmail)	free	web-based	e-mail	1996	(1996):	RankDex	search	engine	1997	(1997):	Google	Search	1997	(1997):	Babel	Fish	automatic
translation	1998	(1998):	Yahoo	Groups	(formerly	Yahoo!	Clubs)	1998	(1998):	PayPal	Internet	payment	system	1998	(1998):	Rotten	Tomatoes	review	aggregator	1999	(1999):	2ch	Anonymous	textboard	1999	(1999):	i-mode	mobile	internet	service	1999	(1999):	Napster	peer-to-peer	file	sharing	2000	(2000):	Baidu	search	engine	2001	(2001):	2chan
Anonymous	imageboard	2001	(2001):	BitTorrent	peer-to-peer	file	sharing	2001	(2001):	Wikipedia,	the	free	encyclopedia	2003	(2003):	LinkedIn	business	networking	2003	(2003):	Myspace	social	networking	site	2003	(2003):	Skype	Internet	voice	calls	2003	(2003):	iTunes	Store	2003	(2003):	4chan	Anonymous	imageboard	2003	(2003):	The	Pirate	Bay,
torrent	file	host	2004	(2004):	Facebook	social	networking	site	2004	(2004):	Podcast	media	file	series	2004	(2004):	Flickr	image	hosting	2005	(2005):	YouTube	video	sharing	2005	(2005):	Reddit	link	voting	2005	(2005):	Google	Earth	virtual	globe	2006	(2006):	Twitter	microblogging	2007	(2007):	WikiLeaks	anonymous	news	and	information	leaks
2007	(2007):	Google	Street	View	2007	(2007):	Kindle,	e-reader	and	virtual	bookshop	2008	(2008):	Amazon	Elastic	Compute	Cloud	(EC2)	2008	(2008):	Dropbox	cloud-based	file	hosting	2008	(2008):	Encyclopedia	of	Life,	a	collaborative	encyclopedia	intended	to	document	all	living	species	2008	(2008):	Spotify,	a	DRM-based	music	streaming	service
2009	(2009):	Bing	search	engine	2009	(2009):	Google	Docs,	Web-based	word	processor,	spreadsheet,	presentation,	form,	and	data	storage	service	2009	(2009):	Kickstarter,	a	threshold	pledge	system	2009	(2009):	Bitcoin,	a	digital	currency	2010	(2010):	Instagram,	photo	sharing	and	social	networking	2011	(2011):	Google+,	social	networking
2011	(2011):	Snapchat,	photo	sharing	2012	(2012):	Coursera,	massive	open	online	courses	2016	(2016):	TikTok,	video	sharing	and	social	networking	HTTP/3	is	the	third	major	version	of	the	Hypertext	Transfer	Protocol	used	to	exchange	information	on	the	World	Wide	Web,	complementing	the	widely	deployed	HTTP/1.1	and	HTTP/2.	Unlike	previous
versions	which	relied	on	the	well-established	TCP	(published	in	1974),[2]	HTTP/3	uses	QUIC	(officially	introduced	in	2021),[3]	a	multiplexed	transport	protocol	built	on	UDP.[4]	HTTP/3	uses	similar	semantics	compared	to	earlier	revisions	of	the	protocol,	including	the	same	request	methods,	status	codes,	and	message	fields,	but	encodes	them	and
maintains	session	state	differently.	However,	partially	due	to	the	protocol's	adoption	of	QUIC,	HTTP/3	has	lower	latency	and	loads	more	quickly	in	real-world	usage	when	compared	with	previous	versions:	in	some	cases	over	four	times	as	fast	than	with	HTTP/1.1	(which,	for	many	websites,	is	the	only	HTTP	version	deployed).[5][6]	As	of	September
2024,	HTTP/3	is	supported	by	more	than	95%	of	major	web	browsers	in	use[7]	and	34%	of	the	top	10	million	websites.[8]	It	has	been	supported	by	Chromium	(and	derived	projects	including	Google	Chrome,	Microsoft	Edge,	Samsung	Internet,	and	Opera)[9]	since	April	2020	and	by	Mozilla	Firefox	since	May	2021.[7][10]	Safari	14	implemented	the
protocol	but	it	remains	disabled	by	default.[11]	Protocol	stack	of	HTTP/3	compared	to	HTTP/1.1	and	HTTP/2	HTTP/3	originates	from	an	Internet	Draft	adopted	by	the	QUIC	working	group.	The	original	proposal	was	named	"HTTP/2	Semantics	Using	The	QUIC	Transport	Protocol",[12]	and	later	renamed	"Hypertext	Transfer	Protocol	(HTTP)	over
QUIC".[13]	On	28	October	2018	in	a	mailing	list	discussion,	Mark	Nottingham,	Chair	of	the	IETF	HTTP	and	QUIC	Working	Groups,	proposed	renaming	HTTP-over-QUIC	to	HTTP/3,	to	"clearly	identify	it	as	another	binding	of	HTTP	semantics	to	the	wire	protocol	[...]	so	people	understand	its	separation	from	QUIC".[14]	Nottingham's	proposal	was
accepted	by	fellow	IETF	members	a	few	days	later.	The	HTTP	working	group	was	chartered	to	assist	the	QUIC	working	group	during	the	design	of	HTTP/3,	then	assume	responsibility	for	maintenance	after	publication.[15]	Support	for	HTTP/3	was	added	to	Chrome	(Canary	build)	in	September	2019	and	then	eventually	reached	stable	builds,	but	was
disabled	by	a	feature	flag.	It	was	enabled	by	default	in	April	2020.[9]	Firefox	added	support	for	HTTP/3	in	November	2019	through	a	feature	flag[7][16][17]	and	started	enabling	it	by	default	in	April	2021	in	Firefox	88.[7][10]	Experimental	support	for	HTTP/3	was	added	to	Safari	Technology	Preview	on	April	8,	2020[18]	and	was	included	with	Safari
14	that	ships	with	iOS	14	and	macOS	11,[11][19]	but	it's	still	disabled	by	default	as	of	Safari	16,	on	both	macOS	and	iOS.[citation	needed]	On	6	June	2022,	IETF	published	HTTP/3	as	a	Proposed	Standard	in	RFC	9114.[1]	HTTP	semantics	are	consistent	across	versions:	the	same	request	methods,	status	codes,	and	message	fields	are	typically	applicable
to	all	versions.	The	differences	are	in	the	mapping	of	these	semantics	to	underlying	transports.	Both	HTTP/1.1	and	HTTP/2	use	TCP	as	their	transport.	HTTP/3	uses	QUIC,	a	transport	layer	network	protocol	which	uses	user	space	congestion	control	over	the	User	Datagram	Protocol	(UDP).	The	switch	to	QUIC	aims	to	fix	a	major	problem	of	HTTP/2
called	"head-of-line	blocking":	because	the	parallel	nature	of	HTTP/2's	multiplexing	is	not	visible	to	TCP's	loss	recovery	mechanisms,	a	lost	or	reordered	packet	causes	all	active	transactions	to	experience	a	stall	regardless	of	whether	that	transaction	was	impacted	by	the	lost	packet.	Because	QUIC	provides	native	multiplexing,	lost	packets	only	impact
the	streams	where	data	has	been	lost.	The	HTTPS	DNS	resource	record	as	defined	in	RFC	9460[20]	allows	for	connecting	without	first	receiving	the	Alt-Svc	header	via	previous	HTTP	versions,	therefore	removing	the	1	RTT	of	handshaking	of	TCP.[21][22]	There	is	client	support	for	HTTPS	resource	records	since	Firefox	92,	iOS	14,	reported	Safari	14
support,	and	Chromium	supports	it	behind	a	flag.[23][24][25]	Browser	support	for	HTTP/3	Browser	Version	implemented	(disabled	by	default)	Version	shipped	(enabled	by	default)	Comment	Chrome	Stable	build	(79)	December	2019	87[7]	April	2020[26]	Earlier	versions	implemented	other	drafts	of	QUIC	Edge	Stable	build	(79)	December	2019	87
April	2020	Edge	79	was	the	first	version	based	on	Chromium	Firefox	Stable	build	(72.0.1)	January	2020	88[10]	April	2021[27]	Safari	Stable	build	(14.0)	September	2020	16.4	March	2023	Apple	is	testing	HTTP/3	support	on	some	Safari	users	starting	with	Safari	16.4.[28]	Open-source	libraries	that	implement	client	or	server	logic	for	QUIC	and	HTTP/3
include[29]	Libraries	implementing	HTTP/3	Name	Client	Server	Programming	language	Company	Repository	lsquic	Yes	Yes	C	LiteSpeed	nghttp3	Yes	Yes	C	h2o	No	Yes	C	libcurl[30][31]	Yes	No	C	MsQuic[32]	Yes	Yes	C	Microsoft	proxygen	Yes	Yes	C++	Facebook	Cronet	Yes	Yes	C++	Google	.NET[33]	Yes	Yes	C#	(using	MsQuic)[34]	Microsoft	quic-go
Yes	Yes	Go	http3	Yes	Yes	Haskell	Kwik	Yes	Yes	Java	Flupke	Yes	Yes	Java	aioquic	Yes	Yes	Python	quiche	Yes	Yes	Rust	Cloudflare	neqo	Yes	Yes	Rust	Mozilla	quinn	Yes	Yes	Rust	s2n-quic	Yes	Yes	Rust	Amazon	Web	Services	On	7	June	2021,	LiteSpeed	Web	Server	(and	OpenLiteSpeed)	6.0.2	was	released	and	became	the	first	version	to	enable	HTTP/3	by
default.[35]	Caddy	web	server	v2.6.0	(released	20	September	2022)	has	HTTP/3	enabled	by	default.[36]	Nginx	supports	HTTP/3	since	1.25.0	(released	23	May	2023).	A	technology	preview	of	nginx	with	HTTP/3	support	was	released	in	June	2020.[37]	Binary	packages	of	nginx	with	HTTP/3	support	have	been	released	in	February	2023.[38]	Cloudflare
distributes	a	patch	for	nginx	that	integrates	the	quiche	HTTP/3	library	into	it.[39]	Microsoft	IIS	support	for	HTTP/3	is	enabled	natively	with	Windows	Server	2022/Windows	11.[40]	HAProxy	supports	HTTP/3	over	QUIC	since	version	2.6	released	on	31	May	2022.[41][42]	Nimble	Streamer	supports	HTTP/3	since	4.1.8-1[43]	for	HTTP-based	protocols.
Internet	portal	Fast	and	Secure	Protocol	–	Terminal	command	scheme	used	to	transfer	data	^	a	b	M.	Bishop,	ed.	(June	2022).	HTTP/3.	Internet	Engineering	Task	Force.	doi:10.17487/RFC9114.	ISSN	2070-1721.	RFC	9114.	Proposed	Standard.	^	V.	Cerf;	Y.	Dalal;	C.	Sunshine	(December	1974).	SPECIFICATION	OF	INTERNET	TRANSMISSION
CONTROL	PROGRAM.	Network	Working	Group.	doi:10.17487/RFC0675.	RFC	675.	Obsolete.	Obsoleted	by	RFC	7805.	NIC	2.	INWG	72.	^	J.	Iyengar;	M.	Thomson,	eds.	(May	2021).	QUIC:	A	UDP-Based	Multiplexed	and	Secure	Transport.	Internet	Engineering	Task	Force.	doi:10.17487/RFC9000.	ISSN	2070-1721.	RFC	9000.	Proposed	Standard.	^	"What
is	HTTP/3?".	Cloudflare.	Archived	from	the	original	on	4	July	2022.	Retrieved	12	July	2022.	^	Perna,	Gianluca;	Trevisan,	Martino;	Giordano,	Danilo;	Drago,	Idilio	(1	April	2022).	"A	first	look	at	HTTP/3	adoption	and	performance".	Computer	Communications.	187:	115–124.	doi:10.1016/j.comcom.2022.02.005.	hdl:11368/3025202.	ISSN	0140-3664.
S2CID	246936473.	^	"HTTP/3	is	Fast".	Request	Metrics.	Retrieved	1	July	2022.	^	a	b	c	d	e	""HTTP/3"	|	Can	I	use...	Support	tables	for	HTML5,	CSS3,	etc".	canIuse.com.	Retrieved	11	August	2024.	^	"Usage	of	HTTP/3	for	websites".	World	Wide	Web	Technology	Surveys.	W3Techs.	Retrieved	11	August	2024.	^	a	b	"Enabling	QUIC	in	tip-of-tree".
groups.google.com.	Retrieved	8	April	2021.	^	a	b	c	Damjanovic,	Dragana	(16	April	2021).	"QUIC	and	HTTP/3	Support	now	in	Firefox	Nightly	and	Beta".	Mozilla	Hacks	–	the	Web	developer	blog.	Retrieved	17	April	2021.	^	a	b	"Safari	14	Release	Notes".	developer.apple.com.	Retrieved	4	December	2020.	^	Shade,	Robbie	(8	July	2016).	HTTP/2
Semantics	Using	The	QUIC	Transport	Protocol.	IETF.	I-D	draft-shade-quic-http2-mapping.	^	Cimpanu,	Catalin	(12	November	2018).	"HTTP-over-QUIC	to	be	renamed	HTTP/3".	ZDNet.	Retrieved	12	November	2018.	^	Nottingham,	Mark	(28	October	2018).	"Identifying	our	deliverables".	IETF	Mail	Archive.	^	"Hypertext	Transfer	Protocol	Charter".
ietf.org.	Retrieved	2	September	2020.	^	Daniel,	Stenberg.	"Daniel	Stenberg	announces	HTTP/3	support	in	Firefox	Nightly".	Twitter.	Retrieved	5	November	2019.	^	Cimpanu,	Catalin	(26	September	2019).	"Cloudflare,	Google	Chrome,	and	Firefox	add	HTTP/3	support".	ZDNet.	Retrieved	27	September	2019.	^	"Release	Notes	for	Safari	Technology
Preview	104".	webkit.org.	8	April	2020.	Retrieved	7	August	2020.	^	Ng,	Gary	(23	June	2020).	"Apple's	Safari	Adds	Support	for	HTTP3	in	iOS	14	and	macOS	11".	iphoneincanada.ca.	Retrieved	25	June	2021.	^	Benjamin	M.	Schwartz;	Mike	Bishop;	Erik	Nygren	(November	2023).	Service	Binding	and	Parameter	Specification	via	the	DNS	(SVCB	and
HTTPS	Resource	Records).	Internet	Engineering	Task	Force.	doi:10.17487/RFC9460.	ISSN	2070-1721.	RFC	9460.	Proposed	Standard.	^	"HTTPS	RR".	MDN.	Mozilla.	Retrieved	25	October	2022.	^	Schwartz,	Benjamin	M.;	Bishop,	Mike;	Nygren,	Erik	(12	June	2020).	Service	binding	and	parameter	specification	via	the	DNS.	IETF.	I-D	draft-ietf-dnsop-
svcb-https.	^	"Firefox	92	for	developers".	Mozilla	Corporation.	7	September	2021.	Retrieved	25	October	2022.	^	"Feature:	HTTP->HTTPS	redirect	for	HTTPS	DNS	records".	Google	Inc.	Retrieved	25	October	2022.	^	Patrick	Mevzek	(24	August	2021).	"What's	the	use	case	of	SVCB	(type	65,	service	binding)	RR".	Stack	Exchange	Inc.	Retrieved	25
October	2022.	^	"Enabling	QUIC	in	tip-of-tree".	groups.google.com.	Retrieved	9	April	2021.	^	"Firefox	Release	Owners	-	MozillaWiki".	wiki.mozilla.org.	Retrieved	9	April	2021.	^	Jen	Simmons	(4	April	2023).	"HTTP/3	support	shipped	in	Safari	14.0".	GitHub.	Retrieved	7	April	2023.	^	"QUIC	Implementations".	GitHub.	Retrieved	8	April	2021.	^	"First
HTTP/3	with	curl".	Daniel	Stenberg.	5	August	2019.	Retrieved	2	October	2019.	^	"HTTP3	(and	QUIC)".	Daniel	Stenberg.	23	August	2023.	Retrieved	27	August	2023.	^	"MsQuic	is	Open	Source".	28	April	2020.	Retrieved	28	April	2020.	^	"HTTP/3	support	in	.NET	6".	17	September	2021.	Retrieved	17	September	2021.	^	"HTTP/3	support	in	.NET	6".
.NET	Blog.	17	September	2021.	Retrieved	12	January	2022.	^	"LiteSpeed	Web	Server	Release	Log	-	LiteSpeed	Technologies".	www.litespeedtech.com.	Retrieved	12	February	2022.	Enable	HTTP/3	v1	by	default.	^	"Release	2.6.0	·	caddyserver/caddy".	Github.	22	September	2022.	Retrieved	20	September	2022.	^	"Introducing	a	Technology	Preview	of
NGINX	Support	for	QUIC	and	HTTP/3".	NGINX.	10	June	2020.	Retrieved	11	June	2020.	^	"Binary	Packages	Now	Available	for	the	Preview	NGINX	QUIC+HTTP/3	Implementation".	NGINX.	8	February	2023.	Retrieved	30	March	2023.	^	"Experiment	with	HTTP/3	using	NGINX	and	quiche".	The	Cloudflare	Blog.	17	October	2019.	Retrieved	9	November
2019.	^	Tratcher.	"Use	ASP.NET	Core	with	HTTP/3	on	IIS".	docs.microsoft.com.	Retrieved	29	April	2022.	^	"Announcing	HAProxy	2.6".	HAProxy	Blog.	31	May	2022.	^	"QUIC	Implementation	in	HAProxy".	HAProxyConf	video	presentation.	25	January	2023.	^	"HTTP/3	and	QUIC	support	in	Nimble	Streamer".	NGINX.	14	February	2025.	Retrieved	17
February	2025.	Official	website	IETF	QUIC	Working	Group	on	GitHub	HTTP/3	explained	(Daniel	Stenberg)	HTTP/3	on	canIuse.com	List	of	QUIC	implementations	on	the	IETF	QUIC	Working	Group	Wiki	Retrieved	from	"	4Application	layer	protocol	HTTPInternational	standard	RFC	1945	HTTP/1.0	RFC	9110	HTTP	Semantics	RFC	9111	HTTP	Caching
RFC	9112	HTTP/1.1	RFC	9113	HTTP/2	RFC	7541	HTTP/2:	HPACK	Header	Compression	RFC	8164	HTTP/2:	Opportunistic	Security	for	HTTP/2	RFC	8336	HTTP/2:	The	ORIGIN	HTTP/2	Frame	RFC	8441	HTTP/2:	Bootstrapping	WebSockets	with	HTTP/2	RFC	9114	HTTP/3	RFC	9204	HTTP/3:	QPACK:	Field	Compression	Developed	byInitially	CERN;	IETF,
W3CIntroduced1991;	34	years	ago	(1991)Websitehttpwg.org/specs/	HTTP	Persistence	Compression	HTTPS	QUIC	Request	methods	OPTIONS	GET	HEAD	POST	PUT	DELETE	TRACE	CONNECT	PATCH	Header	fields	Cookie	ETag	Location	HTTP	referer	DNT	X-Forwarded-For	Response	status	codes	301	Moved	Permanently	302	Found	303	See	Other
403	Forbidden	404	Not	Found	451	Unavailable	for	Legal	Reasons	Security	access	control	methods	Basic	access	authentication	Digest	access	authentication	Security	vulnerabilities	HTTP	header	injection	HTTP	request	smuggling	HTTP	response	splitting	HTTP	parameter	pollution	vte	Internet	protocol	suite	Application	layer	BGP	DHCP	(v6)	DNS	FTP
HTTP	(HTTP/3)	HTTPS	IMAP	IPP	IRC	LDAP	MGCP	MQTT	NNTP	NTP	OSPF	POP	PTP	ONC/RPC	RTP	RTSP	RIP	SIP	SMTP	SNMP	SSH	Telnet	TLS/SSL	XMPP	more...	Transport	layer	TCP	UDP	DCCP	SCTP	RSVP	QUIC	more...	Internet	layer	IP	v4	v6	ICMP	(v6)	NDP	ECN	IGMP	IPsec	more...	Link	layer	ARP	Tunnels	PPP	MAC	more...	vte	HTTP	(Hypertext
Transfer	Protocol)	is	an	application	layer	protocol	in	the	Internet	protocol	suite	model	for	distributed,	collaborative,	hypermedia	information	systems.[1]	HTTP	is	the	foundation	of	data	communication	for	the	World	Wide	Web,	where	hypertext	documents	include	hyperlinks	to	other	resources	that	the	user	can	easily	access,	for	example	by	a	mouse
click	or	by	tapping	the	screen	in	a	web	browser.	Development	of	HTTP	was	initiated	by	Tim	Berners-Lee	at	CERN	in	1989	and	summarized	in	a	simple	document	describing	the	behavior	of	a	client	and	a	server	using	the	first	HTTP	version,	named	0.9.[2]	That	version	was	subsequently	developed,	eventually	becoming	the	public	1.0.[3]	Development	of

early	HTTP	Requests	for	Comments	(RFCs)	started	a	few	years	later	in	a	coordinated	effort	by	the	Internet	Engineering	Task	Force	(IETF)	and	the	World	Wide	Web	Consortium	(W3C),	with	work	later	moving	to	the	IETF.	HTTP/1	was	finalized	and	fully	documented	(as	version	1.0)	in	1996.[4]	It	evolved	(as	version	1.1)	in	1997	and	then	its
specifications	were	updated	in	1999,	2014,	and	2022.[5]	Its	secure	variant	named	HTTPS	is	used	by	more	than	85%	of	websites.[6]	HTTP/2,	published	in	2015,	provides	a	more	efficient	expression	of	HTTP's	semantics	"on	the	wire".	As	of	August	2024,[update]	it	is	supported	by	66.2%	of	websites[7][8]	(35.3%	HTTP/2	+	30.9%	HTTP/3	with	backwards
compatibility)	and	supported	by	almost	all	web	browsers	(over	98%	of	users).[9]	It	is	also	supported	by	major	web	servers	over	Transport	Layer	Security	(TLS)	using	an	Application-Layer	Protocol	Negotiation	(ALPN)	extension[10]	where	TLS	1.2	or	newer	is	required.[11][12]	HTTP/3,	the	successor	to	HTTP/2,	was	published	in	2022.[13]	As	of
February	2024,[update]	it	is	now	used	on	30.9%	of	websites[14]	and	is	supported	by	most	web	browsers,	i.e.	(at	least	partially)	supported	by	97%	of	users.[15]	HTTP/3	uses	QUIC	instead	of	TCP	for	the	underlying	transport	protocol.	Like	HTTP/2,	it	does	not	obsolete	previous	major	versions	of	the	protocol.	Support	for	HTTP/3	was	added	to	Cloudflare
and	Google	Chrome	first,[16][17]	and	is	also	enabled	in	Firefox.[18]	HTTP/3	has	lower	latency	for	real-world	web	pages,	if	enabled	on	the	server,	and	loads	faster	than	with	HTTP/2,	in	some	cases	over	three	times	faster	than	HTTP/1.1	(which	is	still	commonly	only	enabled).[19]	HTTP	functions	as	a	request–response	protocol	in	the	client–server	model.
A	web	browser,	for	example,	may	be	the	client	whereas	a	process,	named	web	server,	running	on	a	computer	hosting	one	or	more	websites	may	be	the	server.	The	client	submits	an	HTTP	request	message	to	the	server.	The	server,	which	provides	resources	such	as	HTML	files	and	other	content	or	performs	other	functions	on	behalf	of	the	client,
returns	a	response	message	to	the	client.	The	response	contains	completion	status	information	about	the	request	and	may	also	contain	requested	content	in	its	message	body.	A	web	browser	is	an	example	of	a	user	agent	(UA).	Other	types	of	user	agent	include	the	indexing	software	used	by	search	providers	(web	crawlers),	voice	browsers,	mobile
apps,	and	other	software	that	accesses,	consumes,	or	displays	web	content.	HTTP	is	designed	to	permit	intermediate	network	elements	to	improve	or	enable	communications	between	clients	and	servers.	High-traffic	websites	often	benefit	from	web	cache	servers	that	deliver	content	on	behalf	of	upstream	servers	to	improve	response	time.	Web
browsers	cache	previously	accessed	web	resources	and	reuse	them,	whenever	possible,	to	reduce	network	traffic.	HTTP	proxy	servers	at	private	network	boundaries	can	facilitate	communication	for	clients	without	a	globally	routable	address,	by	relaying	messages	with	external	servers.	To	allow	intermediate	HTTP	nodes	(proxy	servers,	web	caches,
etc.)	to	accomplish	their	functions,	some	of	the	HTTP	headers	(found	in	HTTP	requests/responses)	are	managed	hop-by-hop	whereas	other	HTTP	headers	are	managed	end-to-end	(managed	only	by	the	source	client	and	by	the	target	web	server).	HTTP	is	an	application	layer	protocol	designed	within	the	framework	of	the	Internet	protocol	suite.	Its
definition	presumes	an	underlying	and	reliable	transport	layer	protocol.[20]	In	HTTP/3,	the	Transmission	Control	Protocol	(TCP)	is	no	longer	used,	but	the	older	versions	are	still	more	used	and	they	most	commonly	use	TCP.	They	have	also	been	adapted	to	use	unreliable	protocols	such	as	the	User	Datagram	Protocol	(UDP),	which	HTTP/3	also
(indirectly)	always	builds	on,	for	example	in	HTTPU	and	Simple	Service	Discovery	Protocol	(SSDP).	HTTP	resources	are	identified	and	located	on	the	network	by	Uniform	Resource	Locators	(URLs),	using	the	Uniform	Resource	Identifiers	(URIs)	schemes	http	and	https.	As	defined	in	RFC	3986,	URIs	are	encoded	as	hyperlinks	in	HTML	documents,	so
as	to	form	interlinked	hypertext	documents.	In	HTTP/1.0	a	separate	TCP	connection	to	the	same	server	is	made	for	every	resource	request.[21]	In	HTTP/1.1	instead	a	TCP	connection	can	be	reused	to	make	multiple	resource	requests	(i.e.	of	HTML	pages,	frames,	images,	scripts,	stylesheets,	etc.).[22][23]	HTTP/1.1	communications	therefore
experience	less	latency	as	the	establishment	of	TCP	connections	presents	considerable	overhead,	especially	under	high	traffic	conditions.[24]	HTTP/2	is	a	revision	of	previous	HTTP/1.1	in	order	to	maintain	the	same	client–server	model	and	the	same	protocol	methods	but	with	these	differences	in	order:	to	use	a	compressed	binary	representation	of
metadata	(HTTP	headers)	instead	of	a	textual	one,	so	that	headers	require	much	less	space;	to	use	a	single	TCP/IP	(usually	encrypted)	connection	per	accessed	server	domain	instead	of	2	to	8	TCP/IP	connections;	to	use	one	or	more	bidirectional	streams	per	TCP/IP	connection	in	which	HTTP	requests	and	responses	are	broken	down	and	transmitted	in
small	packets	to	almost	solve	the	problem	of	the	HOLB	(head-of-line	blocking).[note	1]	to	add	a	push	capability	to	allow	server	application	to	send	data	to	clients	whenever	new	data	is	available	(without	forcing	clients	to	request	periodically	new	data	to	server	by	using	polling	methods).[25]	HTTP/2	communications	therefore	experience	much	less
latency	and,	in	most	cases,	even	higher	speeds	than	HTTP/1.1	communications.	HTTP/3	is	a	revision	of	previous	HTTP/2	in	order	to	use	QUIC	+	UDP	transport	protocols	instead	of	TCP.	Before	that	version,	TCP/IP	connections	were	used;	but	now,	only	the	IP	layer	is	used	(which	UDP,	like	TCP,	builds	on).	This	slightly	improves	the	average	speed	of
communications	and	to	avoid	the	occasional	(very	rare)	problem	of	TCP	connection	congestion	that	can	temporarily	block	or	slow	down	the	data	flow	of	all	its	streams	(another	form	of	"head	of	line	blocking").	Tim	Berners-Lee	The	term	hypertext	was	coined	by	Ted	Nelson	in	1965	in	the	Xanadu	Project,	which	was	in	turn	inspired	by	Vannevar	Bush's
1930s	vision	of	the	microfilm-based	information	retrieval	and	management	"memex"	system	described	in	his	1945	essay	"As	We	May	Think".	Tim	Berners-Lee	and	his	team	at	CERN	are	credited	with	inventing	the	original	HTTP,	along	with	HTML	and	the	associated	technology	for	a	web	server	and	a	client	user	interface	called	web	browser.	Berners-
Lee	designed	HTTP	in	order	to	help	with	the	adoption	of	his	other	idea:	the	"WorldWideWeb"	project,	which	was	first	proposed	in	1989,	now	known	as	the	World	Wide	Web.	The	first	web	server	went	live	in	1990.[26][27]	The	protocol	used	had	only	one	method,	namely	GET,	which	would	request	a	page	from	a	server.[28]	The	response	from	the	server
was	always	an	HTML	page.[2]	Version	Year	introduced	Current	status	Usage	in	August	2024[update]	Support	in	August	2024[update]	HTTP/0.9	1991	Obsolete	0	100%	HTTP/1.0	1996	Obsolete	0	100%	HTTP/1.1	1997	Standard	33.8%	100%	HTTP/2	2015	Standard	35.3%	66.2%	HTTP/3	2022	Standard	30.9%	30.9%	In	1991,	the	first	documented	official
version	of	HTTP	was	written	as	a	plain	document,	less	than	700	words	long,	and	this	version	was	named	HTTP/0.9,	which	supported	only	GET	method,	allowing	clients	to	only	retrieve	HTML	documents	from	the	server,	but	not	supporting	any	other	file	formats	or	information	upload.[2]	Since	1992,	a	new	document	was	written	to	specify	the	evolution
of	the	basic	protocol	towards	its	next	full	version.	It	supported	both	the	simple	request	method	of	the	0.9	version	and	the	full	GET	request	that	included	the	client	HTTP	version.	This	was	the	first	of	the	many	unofficial	HTTP/1.0	drafts	that	preceded	the	final	work	on	HTTP/1.0.[3]	After	having	decided	that	new	features	of	HTTP	protocol	were	required
and	that	they	had	to	be	fully	documented	as	official	RFCs,	in	early	1995	the	HTTP	Working	Group	(HTTP	WG,	led	by	Dave	Raggett)	was	constituted	with	the	aim	to	standardize	and	expand	the	protocol	with	extended	operations,	extended	negotiation,	richer	meta-information,	tied	with	a	security	protocol	which	became	more	efficient	by	adding
additional	methods	and	header	fields.[29][30]	The	HTTP	WG	planned	to	revise	and	publish	new	versions	of	the	protocol	as	HTTP/1.0	and	HTTP/1.1	within	1995,	but,	because	of	the	many	revisions,	that	timeline	lasted	much	more	than	one	year.[31]	The	HTTP	WG	planned	also	to	specify	a	far	future	version	of	HTTP	called	HTTP-NG	(HTTP	Next
Generation)	that	would	have	solved	all	remaining	problems,	of	previous	versions,	related	to	performances,	low	latency	responses,	etc.	but	this	work	started	only	a	few	years	later	and	it	was	never	completed.	In	May	1996,	RFC	1945	was	published	as	a	final	HTTP/1.0	revision	of	what	had	been	used	in	previous	4	years	as	a	pre-standard	HTTP/1.0-draft
which	was	already	used	by	many	web	browsers	and	web	servers.	In	early	1996	developers	started	to	even	include	unofficial	extensions	of	the	HTTP/1.0	protocol	(i.e.	keep-alive	connections,	etc.)	into	their	products	by	using	drafts	of	the	upcoming	HTTP/1.1	specifications.[32]	Since	early	1996,	major	web	browsers	and	web	server	developers	also
started	to	implement	new	features	specified	by	pre-standard	HTTP/1.1	drafts	specifications.	End-user	adoption	of	the	new	versions	of	browsers	and	servers	was	rapid.	In	March	1996,	one	web	hosting	company	reported	that	over	40%	of	browsers	in	use	on	the	Internet	used	the	new	HTTP/1.1	header	"Host"	to	enable	virtual	hosting,	and	that	by	June
1996,	65%	of	all	browsers	accessing	their	servers	were	pre-standard	HTTP/1.1	compliant.[33]	In	January	1997,	RFC	2068	was	officially	released	as	HTTP/1.1	specifications.	In	June	1999,	RFC	2616	was	released	to	include	all	improvements	and	updates	based	on	previous	(obsolete)	HTTP/1.1	specifications.	Resuming	the	old	1995	plan	of	previous	HTTP
Working	Group,	in	1997	an	HTTP-NG	Working	Group	was	formed	to	develop	a	new	HTTP	protocol	named	HTTP-NG	(HTTP	New	Generation).	A	few	proposals	/	drafts	were	produced	for	the	new	protocol	to	use	multiplexing	of	HTTP	transactions	inside	a	single	TCP/IP	connection,	but	in	1999,	the	group	stopped	its	activity	passing	the	technical	problems
to	IETF.[34]	In	2007,	the	IETF	HTTP	Working	Group	(HTTP	WG	bis	or	HTTPbis)	was	restarted	firstly	to	revise	and	clarify	previous	HTTP/1.1	specifications	and	secondly	to	write	and	refine	future	HTTP/2	specifications	(named	httpbis).[35][36]	In	2009,	Google,	a	private	company,	announced	that	it	had	developed	and	tested	a	new	HTTP	binary	protocol
named	SPDY.	The	implicit	aim	was	to	greatly	speed	up	web	traffic	(specially	between	future	web	browsers	and	its	servers).	SPDY	was	indeed	much	faster	than	HTTP/1.1	in	many	tests	and	so	it	was	quickly	adopted	by	Chromium	and	then	by	other	major	web	browsers.[37]	Some	of	the	ideas	about	multiplexing	HTTP	streams	over	a	single	TCP/IP
connection	were	taken	from	various	sources,	including	the	work	of	W3C	HTTP-NG	Working	Group.	In	January–March	2012,	HTTP	Working	Group	(HTTPbis)	announced	the	need	to	start	to	focus	on	a	new	HTTP/2	protocol	(while	finishing	the	revision	of	HTTP/1.1	specifications),	maybe	taking	in	consideration	ideas	and	work	done	for	SPDY.[38][39]
After	a	few	months	about	what	to	do	to	develop	a	new	version	of	HTTP,	it	was	decided	to	derive	it	from	SPDY.[40]	In	May	2015,	HTTP/2	was	published	as	RFC	7540	and	quickly	adopted	by	all	web	browsers	already	supporting	SPDY	and	more	slowly	by	web	servers.	In	June	2014,	the	HTTP	Working	Group	released	an	updated	six-part	HTTP/1.1
specification	obsoleting	RFC	2616:	RFC	7230,	HTTP/1.1:	Message	Syntax	and	Routing	RFC	7231,	HTTP/1.1:	Semantics	and	Content	RFC	7232,	HTTP/1.1:	Conditional	Requests	RFC	7233,	HTTP/1.1:	Range	Requests	RFC	7234,	HTTP/1.1:	Caching	RFC	7235,	HTTP/1.1:	Authentication	In	RFC	7230	Appendix-A,	HTTP/0.9	was	deprecated	for	servers
supporting	HTTP/1.1	version	(and	higher):[41]Since	HTTP/0.9	did	not	support	header	fields	in	a	request,	there	is	no	mechanism	for	it	to	support	name-based	virtual	hosts	(selection	of	resource	by	inspection	of	the	Host	header	field).	Any	server	that	implements	name-based	virtual	hosts	ought	to	disable	support	for	HTTP/0.9.	Most	requests	that	appear
to	be	HTTP/0.9	are,	in	fact,	badly	constructed	HTTP/1.x	requests	caused	by	a	client	failing	to	properly	encode	the	request-target.	Since	2016	many	product	managers	and	developers	of	user	agents	(browsers,	etc.)	and	web	servers	have	begun	planning	to	gradually	deprecate	and	dismiss	support	for	HTTP/0.9	protocol,	mainly	for	the	following	reasons:
[42]	it	is	so	simple	that	an	RFC	document	was	never	written	(there	is	only	the	original	document);[2]	it	has	no	HTTP	headers	and	lacks	many	other	features	that	nowadays	are	required	for	minimal	security	reasons;	it	has	not	been	widespread	since	1999..2000	(because	of	HTTP/1.0	and	HTTP/1.1)	and	is	commonly	used	only	by	some	very	old	network
hardware,	i.e.	routers,	etc.	[note	2]	In	2020,	the	first	drafts	HTTP/3	were	published	and	major	web	browsers	and	web	servers	started	to	adopt	it.	On	6	June	2022,	IETF	standardized	HTTP/3	as	RFC	9114.[43]	In	June	2022,	a	batch	of	RFCs	was	published,	deprecating	many	of	the	previous	documents	and	introducing	a	few	minor	changes	and	a
refactoring	of	HTTP	semantics	description	into	a	separate	document.	RFC	9110,	HTTP	Semantics	RFC	9111,	HTTP	Caching	RFC	9112,	HTTP/1.1	RFC	9113,	HTTP/2	RFC	9114,	HTTP/3	(see	also	the	section	above)	RFC	9204,	QPACK:	Field	Compression	for	HTTP/3	RFC	9218,	Extensible	Prioritization	Scheme	for	HTTP	HTTP	is	a	stateless	application-
level	protocol	and	it	requires	a	reliable	network	transport	connection	to	exchange	data	between	client	and	server.[20]	In	HTTP	implementations,	TCP/IP	connections	are	used	using	well-known	ports	(typically	port	80	if	the	connection	is	unencrypted	or	port	443	if	the	connection	is	encrypted,	see	also	List	of	TCP	and	UDP	port	numbers).[44][45]	In
HTTP/2,	a	TCP/IP	connection	plus	multiple	protocol	channels	are	used.	In	HTTP/3,	the	application	transport	protocol	QUIC	over	UDP	is	used.	Data	is	exchanged	through	a	sequence	of	request–response	messages	which	are	exchanged	by	a	session	layer	transport	connection.[20]	An	HTTP	client	initially	tries	to	connect	to	a	server	establishing	a
connection	(real	or	virtual).	An	HTTP(S)	server	listening	on	that	port	accepts	the	connection	and	then	waits	for	a	client's	request	message.	The	client	sends	its	HTTP	request	message.	Upon	receiving	the	request	the	server	sends	back	an	HTTP	response	message,	which	includes	header(s)	plus	a	body	if	it	is	required.	The	body	of	this	response	message
is	typically	the	requested	resource,	although	an	error	message	or	other	information	may	also	be	returned.	At	any	time	(for	many	reasons)	client	or	server	can	close	the	connection.	Closing	a	connection	is	usually	advertised	in	advance	by	using	one	or	more	HTTP	headers	in	the	last	request/response	message	sent	to	server	or	client.[22]	Main	article:
HTTP	persistent	connection	In	HTTP/0.9,	the	TCP/IP	connection	is	always	closed	after	server	response	has	been	sent,	so	it	is	never	persistent.	In	HTTP/1.0,	as	stated	in	RFC	1945,	the	TCP/IP	connection	should	always	be	closed	by	server	after	a	response	has	been	sent.[note	3]	In	HTTP/1.1	a	keep-alive-mechanism	was	officially	introduced	so	that	a
connection	could	be	reused	for	more	than	one	request/response.	Such	persistent	connections	reduce	request	latency	perceptibly	because	the	client	does	not	need	to	re-negotiate	the	TCP	3-Way-Handshake	connection	after	the	first	request	has	been	sent.	Another	positive	side	effect	is	that,	in	general,	the	connection	becomes	faster	with	time	due	to
TCP's	slow-start-mechanism.	HTTP/1.1	added	also	HTTP	pipelining	in	order	to	further	reduce	lag	time	when	using	persistent	connections	by	allowing	clients	to	send	multiple	requests	before	waiting	for	each	response.	This	optimization	was	never	considered	really	safe	because	a	few	web	servers	and	many	proxy	servers,	specially	transparent	proxy
servers	placed	in	Internet	/	Intranets	between	clients	and	servers,	did	not	handle	pipelined	requests	properly	(they	served	only	the	first	request	discarding	the	others,	they	closed	the	connection	because	they	saw	more	data	after	the	first	request	or	some	proxies	even	returned	responses	out	of	order	etc.).	Because	of	this,	only	HEAD	and	some	GET
requests	(i.e.	limited	to	real	file	requests	and	so	with	URLs	without	query	string	used	as	a	command,	etc.)	could	be	pipelined	in	a	safe	and	idempotent	mode.	After	many	years	of	struggling	with	the	problems	introduced	by	enabling	pipelining,	this	feature	was	first	disabled	and	then	removed	from	most	browsers	also	because	of	the	announced	adoption
of	HTTP/2.	HTTP/2	extended	the	usage	of	persistent	connections	by	multiplexing	many	concurrent	requests/responses	through	a	single	TCP/IP	connection.	HTTP/3	does	not	use	TCP/IP	connections	but	QUIC	+	UDP	(see	also:	technical	overview).	HTTP/0.9	A	requested	resource	was	always	sent	in	its	entirety.	HTTP/1.0	HTTP/1.0	added	headers	to
manage	resources	cached	by	client	in	order	to	allow	conditional	GET	requests;	in	practice	a	server	has	to	return	the	entire	content	of	the	requested	resource	only	if	its	last	modified	time	is	not	known	by	client	or	if	it	changed	since	last	full	response	to	GET	request.	One	of	these	headers,	"Content-Encoding",	was	added	to	specify	whether	the	returned
content	of	a	resource	was	or	was	not	compressed.	If	the	total	length	of	the	content	of	a	resource	was	not	known	in	advance	(i.e.	because	it	was	dynamically	generated,	etc.)	then	the	header	"Content-Length:	number"	was	not	present	in	HTTP	headers	and	the	client	assumed	that	when	server	closed	the	connection,	the	content	had	been	sent	in	its
entirety.	This	mechanism	could	not	distinguish	between	a	resource	transfer	successfully	completed	and	an	interrupted	one	(because	of	a	server	/	network	error	or	something	else).	HTTP/1.1	HTTP/1.1	introduced:	new	headers	to	better	manage	the	conditional	retrieval	of	cached	resources.	chunked	transfer	encoding	to	allow	content	to	be	streamed	in
chunks	in	order	to	reliably	send	it	even	when	the	server	does	not	know	its	length	in	advance	(i.e.	because	it	is	dynamically	generated,	etc.).	byte	range	serving,	where	a	client	can	request	only	one	or	more	portions	(ranges	of	bytes)	of	a	resource	(i.e.	the	first	part,	a	part	in	the	middle	or	in	the	end	of	the	entire	content,	etc.)	and	the	server	usually	sends
only	the	requested	part(s).	This	is	useful	to	resume	an	interrupted	download	(when	a	file	is	very	large),	when	only	a	part	of	a	content	has	to	be	shown	or	dynamically	added	to	the	already	visible	part	by	a	browser	(i.e.	only	the	first	or	the	following	n	comments	of	a	web	page)	in	order	to	spare	time,	bandwidth	and	system	resources,	etc.	HTTP/2,	HTTP/3
Both	HTTP/2	and	HTTP/3	have	kept	the	above	mentioned	features	of	HTTP/1.1.	HTTP	provides	multiple	authentication	schemes	such	as	basic	access	authentication	and	digest	access	authentication	which	operate	via	a	challenge–response	mechanism	whereby	the	server	identifies	and	issues	a	challenge	before	serving	the	requested	content.	HTTP
provides	a	general	framework	for	access	control	and	authentication,	via	an	extensible	set	of	challenge–response	authentication	schemes,	which	can	be	used	by	a	server	to	challenge	a	client	request	and	by	a	client	to	provide	authentication	information.[1]	The	authentication	mechanisms	described	above	belong	to	the	HTTP	protocol	and	are	managed
by	client	and	server	HTTP	software	(if	configured	to	require	authentication	before	allowing	client	access	to	one	or	more	web	resources),	and	not	by	the	web	applications	using	a	web	application	session.	The	HTTP	Authentication	specification	also	provides	an	arbitrary,	implementation-specific	construct	for	further	dividing	resources	common	to	a	given
root	URI.	The	realm	value	string,	if	present,	is	combined	with	the	canonical	root	URI	to	form	the	protection	space	component	of	the	challenge.	This	in	effect	allows	the	server	to	define	separate	authentication	scopes	under	one	root	URI.[1]	HTTP	is	a	stateless	protocol.	A	stateless	protocol	does	not	require	the	web	server	to	retain	information	or	status
about	each	user	for	the	duration	of	multiple	requests.	Some	web	applications	need	to	manage	user	sessions,	so	they	implement	states,	or	server	side	sessions,	using	for	instance	HTTP	cookies[46]	or	hidden	variables	within	web	forms.	To	start	an	application	user	session,	an	interactive	authentication	via	web	application	login	must	be	performed.	To
stop	a	user	session	a	logout	operation	must	be	requested	by	user.	These	kind	of	operations	do	not	use	HTTP	authentication	but	a	custom	managed	web	application	authentication.	Request	messages	are	sent	by	a	client	to	a	target	server.[note	4]	A	client	sends	request	messages	to	the	server,	which	consist	of:[47]	a	request	line,	consisting	of	the	case-
sensitive	request	method,	a	space,	the	requested	URI,	another	space,	the	protocol	version,	a	carriage	return,	and	a	line	feed,	e.g.:	GET	/images/logo.png	HTTP/1.1	zero	or	more	request	header	fields	(at	least	1	or	more	headers	in	case	of	HTTP/1.1),	each	consisting	of	the	case-insensitive	field	name,	a	colon,	optional	leading	whitespace,	the	field	value,
an	optional	trailing	whitespace	and	ending	with	a	carriage	return	and	a	line	feed,	e.g.:	Host:	www.example.com	Accept-Language:	en	an	empty	line,	consisting	of	a	carriage	return	and	a	line	feed;	an	optional	message	body.	In	the	HTTP/1.1	protocol,	all	header	fields	except	Host:	hostname	are	optional.	A	request	line	containing	only	the	path	name	is
accepted	by	servers	to	maintain	compatibility	with	HTTP	clients	before	the	HTTP/1.0	specification	in	RFC	1945.[48]	An	HTTP/1.1	request	made	using	telnet.	The	request	message,	response	header	section,	and	response	body	are	highlighted.	HTTP	defines	methods	(sometimes	referred	to	as	verbs,	but	nowhere	in	the	specification	does	it	mention	verb)
to	indicate	the	desired	action	to	be	performed	on	the	identified	resource.	What	this	resource	represents,	whether	pre-existing	data	or	data	that	is	generated	dynamically,	depends	on	the	implementation	of	the	server.	Often,	the	resource	corresponds	to	a	file	or	the	output	of	an	executable	residing	on	the	server.	The	HTTP/1.0	specification[49]	defined
the	GET,	HEAD,	and	POST	methods	as	well	as	listing	the	PUT,	DELETE,	LINK	and	UNLINK	methods	under	additional	methods.	However,	the	HTTP/1.1	specification[50]	formally	defined	and	added	five	new	methods:	PUT,	DELETE,	CONNECT,	OPTIONS,	and	TRACE.	Any	client	can	use	any	method	and	the	server	can	be	configured	to	support	any
combination	of	methods.	If	a	method	is	unknown	to	an	intermediate,	it	will	be	treated	as	an	unsafe	and	non-idempotent	method.	There	is	no	limit	to	the	number	of	methods	that	can	be	defined,	which	allows	for	future	methods	to	be	specified	without	breaking	existing	infrastructure.	For	example,	WebDAV	defined	seven	new	methods	and	RFC	5789
specified	the	PATCH	method.	Method	names	are	case	sensitive.[51][52]	This	is	in	contrast	to	HTTP	header	field	names	which	are	case-insensitive.[53]	GET	The	GET	method	requests	that	the	target	resource	transfer	a	representation	of	its	state.	GET	requests	should	only	retrieve	data	and	should	have	no	other	effect.	(This	is	also	true	of	some	other
HTTP	methods.)[1]	For	retrieving	resources	without	making	changes,	GET	is	preferred	over	POST,	as	they	can	be	addressed	through	a	URL.	This	enables	bookmarking	and	sharing	and	makes	GET	responses	eligible	for	caching,	which	can	save	bandwidth.	The	W3C	has	published	guidance	principles	on	this	distinction,	saying,	"Web	application	design
should	be	informed	by	the	above	principles,	but	also	by	the	relevant	limitations."[54]	See	safe	methods	below.	HEAD	The	HEAD	method	requests	that	the	target	resource	transfer	a	representation	of	its	state,	as	for	a	GET	request,	but	without	the	representation	data	enclosed	in	the	response	body.	This	is	useful	for	retrieving	the	representation
metadata	in	the	response	header,	without	having	to	transfer	the	entire	representation.	Uses	include	checking	whether	a	page	is	available	through	the	status	code	and	quickly	finding	the	size	of	a	file	(Content-Length).	POST	The	POST	method	requests	that	the	target	resource	process	the	representation	enclosed	in	the	request	according	to	the
semantics	of	the	target	resource.	For	example,	it	is	used	for	posting	a	message	to	an	Internet	forum,	subscribing	to	a	mailing	list,	or	completing	an	online	shopping	transaction.[55]	PUT	The	PUT	method	requests	that	the	target	resource	create	or	update	its	state	with	the	state	defined	by	the	representation	enclosed	in	the	request.	A	distinction	from
POST	is	that	the	client	specifies	the	target	location	on	the	server.[56]	DELETE	The	DELETE	method	requests	that	the	target	resource	delete	its	state.	CONNECT	The	CONNECT	method	requests	that	the	intermediary	establish	a	TCP/IP	tunnel	to	the	origin	server	identified	by	the	request	target.	It	is	often	used	to	secure	connections	through	one	or
more	HTTP	proxies	with	TLS.[57][58]	See	HTTP	CONNECT	method.	OPTIONS	The	OPTIONS	method	requests	that	the	target	resource	transfer	the	HTTP	methods	that	it	supports.	This	can	be	used	to	check	the	functionality	of	a	web	server	by	requesting	'*'	instead	of	a	specific	resource.	TRACE	The	TRACE	method	requests	that	the	target	resource
transfer	the	received	request	in	the	response	body.	That	way	a	client	can	see	what	(if	any)	changes	or	additions	have	been	made	by	intermediaries.	PATCH	The	PATCH	method	requests	that	the	target	resource	modify	its	state	according	to	the	partial	update	defined	in	the	representation	enclosed	in	the	request.	This	can	save	bandwidth	by	updating	a
part	of	a	file	or	document	without	having	to	transfer	it	entirely.[59]	All	general-purpose	web	servers	are	required	to	implement	at	least	the	GET	and	HEAD	methods,	and	all	other	methods	are	considered	optional	by	the	specification.[52]	Properties	of	request	methods	Request	method	RFC	Request	has	payload	body	Response	has	payload	body	Safe
Idempotent	Cacheable	GET	RFC	9110	Optional	Yes	Yes	Yes	Yes	HEAD	RFC	9110	Optional	No	Yes	Yes	Yes	POST	RFC	9110	Yes	Yes	No	No	Yes	PUT	RFC	9110	Yes	Yes	No	Yes	No	DELETE	RFC	9110	Optional	Yes	No	Yes	No	CONNECT	RFC	9110	Optional	Yes	No	No	No	OPTIONS	RFC	9110	Optional	Yes	Yes	Yes	No	TRACE	RFC	9110	No	Yes	Yes	Yes	No
PATCH	RFC	5789	Yes	Yes	No	No	No	A	request	method	is	safe	if	a	request	with	that	method	has	no	intended	effect	on	the	server.	The	methods	GET,	HEAD,	OPTIONS,	and	TRACE	are	defined	as	safe.	In	other	words,	safe	methods	are	intended	to	be	read-only.	Safe	methods	can	still	have	side	effects	not	seen	by	the	client,	such	as	appending	request
information	to	a	log	file	or	charging	an	advertising	account.	In	contrast,	the	methods	POST,	PUT,	DELETE,	CONNECT,	and	PATCH	are	not	safe.	They	may	modify	the	state	of	the	server	or	have	other	effects	such	as	sending	an	email.	Such	methods	are	therefore	not	usually	used	by	conforming	web	robots	or	web	crawlers;	some	that	do	not	conform
tend	to	make	requests	without	regard	to	context	or	consequences.	Despite	the	prescribed	safety	of	GET	requests,	in	practice	their	handling	by	the	server	is	not	technically	limited	in	any	way.	Careless	or	deliberately	irregular	programming	can	allow	GET	requests	to	cause	non-trivial	changes	on	the	server.	This	is	discouraged	because	of	the	problems
which	can	occur	when	web	caching,	search	engines,	and	other	automated	agents	make	unintended	changes	on	the	server.	For	example,	a	website	might	allow	deletion	of	a	resource	through	a	URL	such	as	which,	if	arbitrarily	fetched,	even	using	GET,	would	simply	delete	the	article.[60]	A	properly	coded	website	would	require	a	DELETE	or	POST
method	for	this	action,	which	non-malicious	bots	would	not	make.	One	example	of	this	occurring	in	practice	was	during	the	short-lived	Google	Web	Accelerator	beta,	which	prefetched	arbitrary	URLs	on	the	page	a	user	was	viewing,	causing	records	to	be	automatically	altered	or	deleted	en	masse.	The	beta	was	suspended	only	weeks	after	its	first
release,	following	widespread	criticism.[61][60]	See	also:	Idempotence	§	Computer	science	meaning	A	request	method	is	idempotent	if	multiple	identical	requests	with	that	method	have	the	same	effect	as	a	single	such	request.	The	methods	PUT	and	DELETE,	and	safe	methods	are	defined	as	idempotent.	Safe	methods	are	trivially	idempotent,	since
they	are	intended	to	have	no	effect	on	the	server	whatsoever;	the	PUT	and	DELETE	methods,	meanwhile,	are	idempotent	since	successive	identical	requests	will	be	ignored.	A	website	might,	for	instance,	set	up	a	PUT	endpoint	to	modify	a	user's	recorded	email	address.	If	this	endpoint	is	configured	correctly,	any	requests	which	ask	to	change	a	user's
email	address	to	the	same	email	address	which	is	already	recorded—e.g.	duplicate	requests	following	a	successful	request—will	have	no	effect.	Similarly,	a	request	to	DELETE	a	certain	user	will	have	no	effect	if	that	user	has	already	been	deleted.	In	contrast,	the	methods	POST,	CONNECT,	and	PATCH	are	not	necessarily	idempotent,	and	therefore
sending	an	identical	POST	request	multiple	times	may	further	modify	the	state	of	the	server	or	have	further	effects,	such	as	sending	multiple	emails.	In	some	cases	this	is	the	desired	effect,	but	in	other	cases	it	may	occur	accidentally.	A	user	might,	for	example,	inadvertently	send	multiple	POST	requests	by	clicking	a	button	again	if	they	were	not
given	clear	feedback	that	the	first	click	was	being	processed.	While	web	browsers	may	show	alert	dialog	boxes	to	warn	users	in	some	cases	where	reloading	a	page	may	re-submit	a	POST	request,	it	is	generally	up	to	the	web	application	to	handle	cases	where	a	POST	request	should	not	be	submitted	more	than	once.	Note	that	whether	or	not	a	method
is	idempotent	is	not	enforced	by	the	protocol	or	web	server.	It	is	perfectly	possible	to	write	a	web	application	in	which	(for	example)	a	database	insert	or	other	non-idempotent	action	is	triggered	by	a	GET	or	other	request.	To	do	so	against	recommendations,	however,	may	result	in	undesirable	consequences,	if	a	user	agent	assumes	that	repeating	the
same	request	is	safe	when	it	is	not.	See	also:	Web	cache	A	request	method	is	cacheable	if	responses	to	requests	with	that	method	may	be	stored	for	future	reuse.	The	methods	GET,	HEAD,	and	POST	are	defined	as	cacheable.	In	contrast,	the	methods	PUT,	DELETE,	CONNECT,	OPTIONS,	TRACE,	and	PATCH	are	not	cacheable.	See	also:	List	of	HTTP
header	fields	§	Request	fields	Request	header	fields	allow	the	client	to	pass	additional	information	beyond	the	request	line,	acting	as	request	modifiers	(similarly	to	the	parameters	of	a	procedure).	They	give	information	about	the	client,	about	the	target	resource,	or	about	the	expected	handling	of	the	request.	A	response	message	is	sent	by	a	server	to
a	client	as	a	reply	to	its	former	request	message.[note	4]	A	server	sends	response	messages	to	the	client,	which	consist	of:[47]	a	status	line,	consisting	of	the	protocol	version,	a	space,	the	response	status	code,	another	space,	a	possibly	empty	reason	phrase,	a	carriage	return	and	a	line	feed,	e.g.:	HTTP/1.1	200	OK	zero	or	more	response	header	fields,
each	consisting	of	the	case-insensitive	field	name,	a	colon,	optional	leading	whitespace,	the	field	value,	an	optional	trailing	whitespace	and	ending	with	a	carriage	return	and	a	line	feed,	e.g.:	Content-Type:	text/html	an	empty	line,	consisting	of	a	carriage	return	and	a	line	feed;	an	optional	message	body.	See	also:	List	of	HTTP	status	codes	In	HTTP/1.0
and	since,	the	first	line	of	the	HTTP	response	is	called	the	status	line	and	includes	a	numeric	status	code	(such	as	"404")	and	a	textual	reason	phrase	(such	as	"Not	Found").	The	response	status	code	is	a	three-digit	integer	code	representing	the	result	of	the	server's	attempt	to	understand	and	satisfy	the	client's	corresponding	request.	The	way	the
client	handles	the	response	depends	primarily	on	the	status	code,	and	secondarily	on	the	other	response	header	fields.	Clients	may	not	understand	all	registered	status	codes	but	they	must	understand	their	class	(given	by	the	first	digit	of	the	status	code)	and	treat	an	unrecognized	status	code	as	being	equivalent	to	the	x00	status	code	of	that	class.
The	standard	reason	phrases	are	only	recommendations,	and	can	be	replaced	with	"local	equivalents"	at	the	web	developer's	discretion.	If	the	status	code	indicated	a	problem,	the	user	agent	might	display	the	reason	phrase	to	the	user	to	provide	further	information	about	the	nature	of	the	problem.	The	standard	also	allows	the	user	agent	to	attempt	to
interpret	the	reason	phrase,	though	this	might	be	unwise	since	the	standard	explicitly	specifies	that	status	codes	are	machine-readable	and	reason	phrases	are	human-readable.	The	first	digit	of	the	status	code	defines	its	class:	1XX	(informational)	The	request	was	received,	continuing	process.	2XX	(successful)	The	request	was	successfully	received,
understood,	and	accepted.	3XX	(redirection)	Further	action	needs	to	be	taken	in	order	to	complete	the	request.	4XX	(client	error)	The	request	contains	bad	syntax	or	cannot	be	fulfilled.	5XX	(server	error)	The	server	failed	to	fulfill	an	apparently	valid	request.	See	also:	List	of	HTTP	header	fields	§	Response	fields	The	response	header	fields	allow	the
server	to	pass	additional	information	beyond	the	status	line,	acting	as	response	modifiers.	They	give	information	about	the	server	or	about	further	access	to	the	target	resource	or	related	resources.	Each	response	header	field	has	a	defined	meaning	which	can	be	further	refined	by	the	semantics	of	the	request	method	or	response	status	code.	Below	is
a	sample	HTTP	transaction	between	an	HTTP/1.1	client	and	an	HTTP/1.1	server	running	on	www.example.com,	port	80.[note	5][note	6]	GET	/	HTTP/1.1	Host:	www.example.com	User-Agent:	Mozilla/5.0	Accept:	text/html,application/xhtml+xml,application/xml;q=0.9,image/avif,image/webp,*/*;q=0.8	Accept-Language:	en-GB,en;q=0.5	Accept-Encoding:
gzip,	deflate,	br	Connection:	keep-alive	A	client	request	(consisting	in	this	case	of	the	request	line	and	a	few	headers	that	can	be	reduced	to	only	the	"Host:	hostname"	header)	is	followed	by	a	blank	line,	so	that	the	request	ends	with	a	double	end	of	line,	each	in	the	form	of	a	carriage	return	followed	by	a	line	feed.	The	"Host:	hostname"	header	value
distinguishes	between	various	DNS	names	sharing	a	single	IP	address,	allowing	name-based	virtual	hosting.	While	optional	in	HTTP/1.0,	it	is	mandatory	in	HTTP/1.1.	(A	"/"	(slash)	will	usually	fetch	a	/index.html	file	if	there	is	one.)	HTTP/1.1	200	OK	Date:	Mon,	23	May	2005	22:38:34	GMT	Content-Type:	text/html;	charset=UTF-8	Content-Length:	155
Last-Modified:	Wed,	08	Jan	2003	23:11:55	GMT	Server:	Apache/1.3.3.7	(Unix)	(Red-Hat/Linux)	ETag:	"3f80f-1b6-3e1cb03b"	Accept-Ranges:	bytes	Connection:	close	An	Example	Page	Hello	World,	this	is	a	very	simple	HTML	document.	The	ETag	(entity	tag)	header	field	is	used	to	determine	if	a	cached	version	of	the	requested	resource	is	identical	to
the	current	version	of	the	resource	on	the	server.	"Content-Type"	specifies	the	Internet	media	type	of	the	data	conveyed	by	the	HTTP	message,	while	"Content-Length"	indicates	its	length	in	bytes.	The	HTTP/1.1	webserver	publishes	its	ability	to	respond	to	requests	for	certain	byte	ranges	of	the	document	by	setting	the	field	"Accept-Ranges:	bytes".
This	is	useful,	if	the	client	needs	to	have	only	certain	portions[62]	of	a	resource	sent	by	the	server,	which	is	called	byte	serving.	When	"Connection:	close"	is	sent,	it	means	that	the	web	server	will	close	the	TCP	connection	immediately	after	the	end	of	the	transfer	of	this	response.[22]	Most	of	the	header	lines	are	optional	but	some	are	mandatory.
When	header	"Content-Length:	number"	is	missing	in	a	response	with	an	entity	body	then	this	should	be	considered	an	error	in	HTTP/1.0	but	it	may	not	be	an	error	in	HTTP/1.1	if	header	"Transfer-Encoding:	chunked"	is	present.	Chunked	transfer	encoding	uses	a	chunk	size	of	0	to	mark	the	end	of	the	content.	Some	old	implementations	of	HTTP/1.0
omitted	the	header	"Content-Length"	when	the	length	of	the	body	entity	was	not	known	at	the	beginning	of	the	response	and	so	the	transfer	of	data	to	client	continued	until	server	closed	the	socket.	A	"Content-Encoding:	gzip"	can	be	used	to	inform	the	client	that	the	body	entity	part	of	the	transmitted	data	is	compressed	by	gzip	algorithm.	The	most
popular	way	of	establishing	an	encrypted	HTTP	connection	is	HTTPS.[63]	Two	other	methods	for	establishing	an	encrypted	HTTP	connection	also	exist:	Secure	Hypertext	Transfer	Protocol,	and	using	the	HTTP/1.1	Upgrade	header	to	specify	an	upgrade	to	TLS.	Browser	support	for	these	two	is,	however,	nearly	non-existent.[64][65][66]	The	Gopher
protocol	is	a	content	delivery	protocol	that	was	displaced	by	HTTP	in	the	early	1990s.	The	SPDY	protocol	is	an	alternative	to	HTTP	developed	at	Google,	superseded	by	HTTP/2.	The	Gemini	protocol	is	a	Gopher-inspired	protocol	which	mandates	privacy-related	features.	HTTP	Persistence	Compression	HTTPS	QUIC	Request	methods	OPTIONS	GET
HEAD	POST	PUT	DELETE	TRACE	CONNECT	PATCH	Header	fields	Cookie	ETag	Location	HTTP	referer	DNT	X-Forwarded-For	Response	status	codes	301	Moved	Permanently	302	Found	303	See	Other	403	Forbidden	404	Not	Found	451	Unavailable	for	Legal	Reasons	Security	access	control	methods	Basic	access	authentication	Digest	access
authentication	Security	vulnerabilities	HTTP	header	injection	HTTP	request	smuggling	HTTP	response	splitting	HTTP	parameter	pollution	vte	InterPlanetary	File	System	–	can	replace	HTTP	Comparison	of	file	transfer	protocols	Constrained	Application	Protocol	–	a	semantically	similar	protocol	to	HTTP	but	used	UDP	or	UDP-like	messages	targeted	for
devices	with	limited	processing	capability;	re-uses	HTTP	and	other	internet	concepts	like	Internet	media	type	and	web	linking	(RFC	5988)[67]	Content	negotiation	Digest	access	authentication	HTTP	compression	HTTP/2	–	developed	by	the	IETF's	Hypertext	Transfer	Protocol	(httpbis)	working	group[36]	List	of	HTTP	header	fields	List	of	HTTP	status
codes	Representational	state	transfer	(REST)	Variant	object	Wireless	Application	Protocol	Web	cache	WebSocket	^	In	practice,	these	streams	are	used	as	multiple	TCP/IP	sub-connections	to	multiplex	concurrent	requests/responses,	thus	greatly	reducing	the	number	of	real	TCP/IP	connections	on	server	side,	from	2..8	per	client	to	1,	and	allowing
many	more	clients	to	be	served	at	once.	^	In	2022,	HTTP/0.9	support	has	not	been	officially	completely	deprecated	and	is	still	present	in	many	web	servers	and	browsers	(for	server	responses	only),	even	if	usually	disabled.	It	is	unclear	how	long	it	will	take	to	decommission	HTTP/0.9.	^	Since	late	1996,	some	developers	of	popular	HTTP/1.0	browsers
and	servers	(specially	those	who	had	planned	support	for	HTTP/1.1	too),	started	to	deploy	(as	an	unofficial	extension)	a	sort	of	keep-alive-mechanism	(by	using	new	HTTP	headers)	in	order	to	keep	the	TCP/IP	connection	open	for	more	than	a	request/response	pair	and	so	to	speed	up	the	exchange	of	multiple	requests/responses.[32]	^	a	b	HTTP/2	and
HTTP/3	have	a	different	representation	for	HTTP	methods	and	headers.	^	HTTP/1.0	has	the	same	messages	except	for	a	few	missing	headers.	^	HTTP/2	and	HTTP/3	use	the	same	request	/	response	mechanism	but	with	different	representations	for	HTTP	headers.	^	a	b	c	d	Fielding,	R.;	Nottingham,	M.;	Reschke,	J.	(June	2022).	HTTP	Semantics.	IETF.
doi:10.17487/RFC9110.	RFC	9110.	^	a	b	c	d	Tim	Berner-Lee	(1991-01-01).	"The	Original	HTTP	as	defined	in	1991".	www.w3.org.	World	Wide	Web	Consortium.	Retrieved	2010-07-24.	^	a	b	Tim	Berner-Lee	(1992).	"Basic	HTTP	as	defined	in	1992".	www.w3.org.	World	Wide	Web	Consortium.	Retrieved	2021-10-19.	^	In	RFC	1945.	That	specification	was
then	overcome	by	HTTP/1.1.	^	RFC	2068	(1997)	was	obsoleted	by	RFC	2616	in	1999,	which	was	obsoleted	by	RFC	7230	in	2014,	which	was	obsoleted	by	RFC	9110	in	2022.	^	"Usage	Statistics	of	Default	protocol	https	for	websites".	w3techs.com.	Retrieved	2024-01-05.	^	"Usage	Statistics	of	HTTP/2	for	websites".	w3techs.com.	Retrieved	2024-01-05.
^	"Usage	Statistics	of	HTTP/3	for	Websites,	August	2024".	w3techs.com.	Retrieved	2024-08-13.	^	"Can	I	use...	Support	tables	for	HTML5,	CSS3,	etc".	caniuse.com.	Retrieved	2024-01-05.	^	Friedl,	S.;	Popov,	A.;	Langley,	A.;	Stephan,	E.	(July	2014).	Transport	Layer	Security	(TLS)	Application-Layer	Protocol	Negotiation	Extension.	IETF.
doi:10.17487/RFC7301.	RFC	7301.	^	Belshe,	M.;	Peon,	R.;	Thomson,	M.	"Hypertext	Transfer	Protocol	Version	2,	Use	of	TLS	Features".	Archived	from	the	original	on	2013-07-15.	Retrieved	2015-02-10.	^	Benjamin,	David.	Using	TLS	1.3	with	HTTP/2.	doi:10.17487/RFC8740.	RFC	8740.	Retrieved	2020-06-02.	This	lowers	the	barrier	for	deploying	TLS
1.3,	a	major	security	improvement	over	TLS	1.2.	^	HTTP/3.	6	June	2022.	doi:10.17487/RFC9114.	RFC	9114.	Retrieved	2022-06-06.	^	"Usage	Statistics	of	HTTP/3	for	websites".	w3techs.com.	Retrieved	2024-01-08.	^	"Can	I	use...	Support	tables	for	HTML5,	CSS3,	etc".	canIuse.com.	Retrieved	2024-01-08.	^	Cimpanu,	Catalin	(26	September	2019).
"Cloudflare,	Google	Chrome,	and	Firefox	add	HTTP/3	support".	ZDNet.	Retrieved	27	September	2019.	^	"HTTP/3:	the	past,	the	present,	and	the	future".	The	Cloudflare	Blog.	2019-09-26.	Retrieved	2019-10-30.	^	"Firefox	Nightly	supports	HTTP	3	–	General	–	Cloudflare	Community".	2019-11-19.	Retrieved	2020-01-23.	^	"HTTP/3	is	Fast".	Request
Metrics.	Retrieved	2022-07-01.	^	a	b	c	"Connections,	Clients,	and	Servers".	RFC	9110,	HTTP	Semantics.	sec.	3.3.	doi:10.17487/RFC9110.	RFC	9110.	^	"Overall	Operation".	RFC	1945.	pp.	6–8.	sec.	1.3.	doi:10.17487/RFC1945.	RFC	1945.	^	a	b	c	"Connection	Management:	Establishment".	RFC	9112,	HTTP/1.1.	sec.	9.1.	doi:10.17487/RFC9112.	RFC
9112.	^	"Connection	Management:	Persistence".	RFC	9112,	HTTP/1.1.	sec.	9.3.	doi:10.17487/RFC9112.	RFC	9112.	^	"Classic	HTTP	Documents".	W3.org.	1998-05-14.	Retrieved	2010-08-01.	^	"HTTP/2	Protocol	Overview".	RFC	9113,	HTTP/2).	sec.	2.	doi:10.17487/RFC7540.	RFC	7540.	^	"Invention	Of	The	Web,	Web	History,	Who	Invented	the	Web,
Tim	Berners-Lee,	Robert	Cailliau,	CERN,	First	Web	Server".	LivingInternet.	Retrieved	2021-08-11.	^	Berners-Lee,	Tim	(1990-10-02).	"daemon.c	-	TCP/IP	based	server	for	HyperText".	www.w3.org.	Retrieved	2021-08-11.	^	Berners-Lee,	Tim.	"HyperText	Transfer	Protocol".	World	Wide	Web	Consortium.	Retrieved	31	August	2010.	^	Raggett,	Dave.
"Dave	Raggett's	Bio".	World	Wide	Web	Consortium.	Retrieved	11	June	2010.	^	Raggett,	Dave;	Berners-Lee,	Tim.	"Hypertext	Transfer	Protocol	Working	Group".	World	Wide	Web	Consortium.	Retrieved	29	September	2010.	^	Raggett,	Dave.	"HTTP	WG	Plans".	World	Wide	Web	Consortium.	Retrieved	29	September	2010.	^	a	b	David	Gourley;	Brian
Totty;	Marjorie	Sayer;	Anshu	Aggarwal;	Sailu	Reddy	(2002).	HTTP:	The	Definitive	Guide.	(excerpt	of	chapter:	"Persistent	Connections").	O'Reilly	Media,	inc.	ISBN	9781565925090.	Retrieved	2021-10-18.	^	"HTTP	1.1	Compliant	Browsers".	webcom.com.	Archived	from	the	original	on	1998-02-04.	Retrieved	2009-05-29.	^	"HTTP-NG	Working	Group".
www.w3.org.	World	Wide	Web	Consortium.	1997.	Retrieved	2021-10-19.	^	Web	Administrator	(2007).	"HTTP	Working	Group".	httpwg.org.	IETF.	Retrieved	2021-10-19.	^	a	b	Web	Administrator	(2007).	"HTTP	Working	Group:	charter	httpbis".	datatracker.ietf.org.	IETF.	Retrieved	2021-10-19.	^	"SPDY:	An	experimental	protocol	for	a	faster	web".
dev.chromium.org.	Google.	2009-11-01.	Retrieved	2021-10-19.	^	"Rechartering	httpbis".	IETF;	HTTP	WG.	2012-01-24.	Retrieved	2021-10-19.	^	IESG	Secretary	(2012-03-19).	"WG	Action:	RECHARTER:	Hypertext	Transfer	Protocol	Bis	(httpbis)".	IETF;	HTTP	WG.	Retrieved	2021-10-19.	^	Ilya	Grigorik;	Surma	(2019-09-03).	"High	Performance	Browser
Networking:	Introduction	to	HTTP/2".	developers.google.com.	Google	Inc.	Retrieved	2021-10-19.	^	"Appendix-A:	HTTP	Version	History".	RFC	7230,	HTTP/1.1:	Message	Syntax	and	Routing.	p.	78.	sec.	A.	doi:10.17487/RFC7230.	RFC	7230.	^	Matt	Menke	(2016-06-30).	"Intent	to	Deprecate	and	Remove:	HTTP/0.9	Support".	groups.google.com.	Retrieved
2021-10-15.	^	HTTP/3.	6	June	2022.	doi:10.17487/RFC9114.	RFC	9114.	Retrieved	2022-06-06.	^	"http	URI	Scheme".	RFC	9110,	HTTP	Semantics.	sec.	4.2.1.	doi:10.17487/RFC9110.	RFC	9110.	^	"https	URI	Scheme".	RFC	9110,	HTTP	Semantics.	sec.	4.2.2.	doi:10.17487/RFC9110.	RFC	9110.	^	Lee,	Wei-Bin;	Chen,	Hsing-Bai;	Chang,	Shun-Shyan;	Chen,
Tzung-Her	(2019-01-25).	"Secure	and	efficient	protection	for	HTTP	cookies	with	self-verification".	International	Journal	of	Communication	Systems.	32	(2):	e3857.	doi:10.1002/dac.3857.	S2CID	59524143.	^	a	b	"Message	format".	RFC	9112:	HTTP/1.1.	sec.	2.1.	doi:10.17487/RFC9112.	RFC	9112.	^	"Apache	Week.	HTTP/1.1".	Archived	from	the	original
on	2021-06-02.	Retrieved	2021-05-03.	090502	apacheweek.com	^	Berners-Lee,	Tim;	Fielding,	Roy	T.;	Nielsen,	Henrik	Frystyk.	"Method	Definitions".	Hypertext	Transfer	Protocol	–	HTTP/1.0.	IETF.	pp.	30–32.	sec.	8.	doi:10.17487/RFC1945.	RFC	1945.	^	"Method	Definitions".	RFC	2616.	pp.	51–57.	sec.	9.	doi:10.17487/RFC2616.	RFC	2616.	^	"Request
Line".	RFC	9112,	HTTP/1.1.	sec.	3.	doi:10.17487/RFC9112.	RFC	9112.	^	a	b	"Methods:	Overview".	RFC	9110,	HTTP	Semantics.	sec.	9.1.	doi:10.17487/RFC9110.	RFC	9110.	^	"Header	Fields".	RFC	9110,	HTTP	Semantics.	sec.	6.3.	doi:10.17487/RFC9110.	RFC	9110.	^	Jacobs,	Ian	(2004).	"URIs,	Addressability,	and	the	use	of	HTTP	GET	and	POST".
Technical	Architecture	Group	finding.	W3C.	Retrieved	26	September	2010.	^	"POST".	RFC	9110,	HTTP	Semantics.	sec.	9.3.3.	doi:10.17487/RFC9110.	RFC	9110.	^	"PUT".	RFC	9110,	HTTP	Semantics.	sec.	9.3.4.	doi:10.17487/RFC9110.	RFC	9110.	^	"CONNECT".	RFC	9110,	HTTP	Semantics.	sec.	9.3.6.	doi:10.17487/RFC9110.	RFC	9110.	^
"Vulnerability	Note	VU#150227:	HTTP	proxy	default	configurations	allow	arbitrary	TCP	connections".	US-CERT.	2002-05-17.	Retrieved	2007-05-10.	^	Dusseault,	Lisa;	Snell,	James	M.	(March	2010).	PATCH	Method	for	HTTP.	IETF.	doi:10.17487/RFC5789.	RFC	5789.	^	a	b	Ediger,	Brad	(2007-12-21).	Advanced	Rails:	Building	Industrial-Strength	Web
Apps	in	Record	Time.	O'Reilly	Media,	Inc.	p.	188.	ISBN	978-0596519728.	A	common	mistake	is	to	use	GET	for	an	action	that	updates	a	resource.	[...]	This	problem	came	into	the	Rails	public	eye	in	2005,	when	the	Google	Web	Accelerator	was	released.	^	Cantrell,	Christian	(2005-06-01).	"What	Have	We	Learned	From	the	Google	Web	Accelerator?".
Adobe	Blogs.	Adobe.	Archived	from	the	original	on	2017-08-19.	Retrieved	2018-11-19.	^	Luotonen,	Ari;	Franks,	John	(February	22,	1996).	Byte	Range	Retrieval	Extension	to	HTTP.	IETF.	I-D	draft-ietf-http-range-retrieval-00.	^	Canavan,	John	(2001).	Fundamentals	of	Networking	Security.	Norwood,	MA:	Artech	House.	pp.	82–83.	ISBN	9781580531764.
^	Zalewski,	Michal.	"Browser	Security	Handbook".	Retrieved	30	April	2015.	^	"Chromium	Issue	4527:	implement	RFC	2817:	Upgrading	to	TLS	Within	HTTP/1.1".	Retrieved	30	April	2015.	^	"Mozilla	Bug	276813	–	[RFE]	Support	RFC	2817	/	TLS	Upgrade	for	HTTP	1.1".	Retrieved	30	April	2015.	^	Nottingham,	Mark	(October	2010).	Web	Linking.	IETF.
doi:10.17487/RFC5988.	RFC	5988.	Wikibooks	has	a	book	on	the	topic	of:	Communication	Networks/HTTP	Protocol	Wikimedia	Commons	has	media	related	to	Hypertext	Transfer	Protocol.	Official	website	IETF	HTTP	Working	Group	on	GitHub	"Change	History	for	HTTP".	W3.org.	Retrieved	2010-08-01.	A	detailed	technical	history	of	HTTP.	"Design
Issues	for	HTTP".	W3.org.	Retrieved	2010-08-01.	Design	Issues	by	Berners-Lee	when	he	was	designing	the	protocol.	Retrieved	from	"	How	can	financial	brands	set	themselves	apart	through	visual	storytelling?	Our	experts	explain	how.Learn	MoreThe	Motorsport	Images	Collections	captures	events	from	1895	to	today’s	most	recent	coverage.Discover
The	CollectionCurated,	compelling,	and	worth	your	time.	Explore	our	latest	gallery	of	Editors’	Picks.Browse	Editors'	FavoritesHow	can	financial	brands	set	themselves	apart	through	visual	storytelling?	Our	experts	explain	how.Learn	MoreThe	Motorsport	Images	Collections	captures	events	from	1895	to	today’s	most	recent	coverage.Discover	The
CollectionCurated,	compelling,	and	worth	your	time.	Explore	our	latest	gallery	of	Editors’	Picks.Browse	Editors'	FavoritesHow	can	financial	brands	set	themselves	apart	through	visual	storytelling?	Our	experts	explain	how.Learn	MoreThe	Motorsport	Images	Collections	captures	events	from	1895	to	today’s	most	recent	coverage.Discover	The
CollectionCurated,	compelling,	and	worth	your	time.	Explore	our	latest	gallery	of	Editors’	Picks.Browse	Editors'	Favorites

