
	

https://mukaronabuse.gonujovux.com/215620328309516263102592401274495942701679?fexezuninibevodemoxifamubiviraraxifaperosevuroxinarizumepafilerupusalalutaforipopadukezuxupatezili=zanusoxixosuraxobubajasajanoguwitikofotisemugelexevidurulomujixabagugatagajagekabexukuverizuxaxolunumubinilimezebijuxupanusopojabisajolijufewazomilokafugesarogeguxuxetigolimoxusuxugezovivekutelefavadu&utm_kwd=esercizi+sulle+potenze+prima+media+pdf&fevesinuvigekejegekupusadonetaxajelozumimevinuwanexulalovuripexenojosigofajuroseverinagadigaz=mafitazugilexabatemumuzupuxedetefizulibofazakorawilubadofubuvusuxekiwiwebefatatotepalonejazalemapapidivegudosoluja
























The	software	catalog	backend	has	a	JSON	based	REST	API,	which	can	be	leveraged	by	external	systems.	This	page	describes	its	shape	and	features.	The	OpenAPI	spec	for	this	API	can	be	found	here.	A	UI	visualizing	the	OpenAPI	endpoints	including	the	ability	to	try	them	out	in	the	browser	can	be	found	here.	Overview​	The	API	surface	consists	of	a
few	distinct	groups	of	functionality.	Each	has	a	dedicated	section	below.	Note:	This	page	only	describes	some	of	the	most	commonly	used	parts	of	the	API,	and	is	a	work	in	progress.	All	of	the	URL	paths	in	this	article	are	assumed	to	be	on	top	of	some	base	URL	pointing	at	your	catalog	installation.	For	example,	if	the	path	given	in	a	section	below	is
/entities,	and	the	catalog	is	located	at	during	local	development,	the	full	URL	would	be	.	The	actual	URL	may	vary	from	one	organization	to	the	other,	especially	in	production,	but	is	commonly	your	backend.baseUrl	in	your	app	config,	plus	/api/catalog	at	the	end.	Some	or	all	of	the	endpoints	may	accept	or	require	an	Authorization	header	with	a	Bearer
token,	which	should	then	be	the	Backstage	token	returned	by	the	identity	API.	Entities​	These	are	the	endpoints	that	deal	with	reading	of	entities	directly.	What	it	exposes	are	final	entities	-	i.e.	the	output	of	all	processing	and	the	stitching	process,	not	the	raw	originally	ingested	entity	data.	See	The	Life	of	an	Entity	for	more	details	about	this	process
and	distinction.	GET	/entities/by-query​	Query	entities.	Supports	the	following	query	parameters,	described	in	the	section	below:	filter,	for	selecting	only	a	subset	of	all	entities	fields,	for	selecting	only	parts	of	the	full	data	structure	of	each	entity	limit	for	limiting	the	number	of	entities	returned	(20	is	the	default)	orderField,	for	deciding	the	order	of	the
entities	fullTextFilter,	for	filtering	the	entities	by	text	cursor,	for	retrieving	the	next	or	previous	batch	of	entities	The	return	type	is	JSON,	on	the	following	form	{	"items":	[{	"kind":	"Component",	"metadata":	{	"name":	"foo"	}	}],	"totalItems":	4,	"pageInfo":	{	"nextCursor":	"a-cursor",	"prevCursor":	"another-cursor"	}}	Filtering​	You	can	pass	in	one	or
more	filter	sets	that	get	matched	against	each	entity.	Each	filter	set	is	a	number	of	conditions	that	all	have	to	match	for	the	condition	to	be	true	(conditions	effectively	have	an	AND	between	them).	At	least	one	filter	set	has	to	be	true	for	the	entity	to	be	part	of	the	result	set	(filter	sets	effectively	have	an	OR	between	them).	Example:	/entities/by-query?
filter=kind=user,metadata.namespace=default&filter=kind=group,spec.type	Return	entities	that	match	Filter	set	1:	Condition	1:	kind	=	user	AND	Condition	2:	metadata.namespace	=	default	OR	Filter	set	2:	Condition	1:	kind	=	group	AND	Condition	2:	spec.type	exists	Each	condition	is	either	on	the	form	,	or	on	the	form	=.	The	first	form	asserts	on
the	existence	of	a	certain	key	(with	any	value),	and	the	second	asserts	that	the	key	exists	and	has	a	certain	value.	All	checks	are	always	case	insensitive.	In	all	cases,	the	key	is	a	simplified	JSON	path	in	a	given	piece	of	entity	data.	Each	part	of	the	path	is	a	key	of	an	object,	and	the	traversal	also	descends	through	arrays.	There	are	two	special	forms:
Array	items	that	are	simple	value	types	(such	as	strings)	match	on	a	key-value	pair	where	the	key	is	the	item	as	a	string,	and	the	value	is	the	string	true	Relations	can	be	matched	on	a	relations.=	form	Let's	look	at	a	simplified	example	to	illustrate	the	concept:	{	"a":	{	"b":	["c",	{	"d":	1	}],	"e":	7	}}	This	would	match	any	one	of	the	following	conditions:
a	a.b	a.b.c	a.b.c=true	a.b.d	a.b.d=1	a.e	a.e=7	Some	more	real	world	usable	examples:	Return	all	orphaned	entities:	/entities/by-query?filter=metadata.annotations.backstage.io/orphan=true	Return	all	users	and	groups:	/entities/by-query?filter=kind=user&filter=kind=group	Return	all	service	components:	/entities/by-query?
filter=kind=component,spec.type=service	Return	all	entities	with	the	java	tag:	/entities/by-query?filter=metadata.tags.java	Return	all	users	who	are	members	of	the	ops	group	(note	that	the	full	reference	of	the	group	is	used):	/entities/by-query?filter=kind=user,relations.memberof=group:default/ops	Full	text	filtering​	TODO	Field	selection​	By	default
the	full	entities	are	returned,	but	you	can	pass	in	a	fields	query	parameter	which	selects	what	parts	of	the	entity	data	to	retain.	This	makes	the	response	smaller	and	faster	to	transfer,	and	may	allow	the	catalog	to	perform	more	efficient	queries.	The	query	parameter	value	is	a	comma	separated	list	of	simplified	JSON	paths	like	above.	Each	path
corresponds	to	the	key	of	either	a	value,	or	of	a	subtree	root	that	you	want	to	keep	in	the	output.	The	rest	is	pruned	away.	For	example,	specifying	?fields=metadata.name,metadata.annotations,spec	retains	only	the	name	and	annotations	fields	of	the	metadata	of	each	entity	(it'll	be	an	object	with	at	most	two	keys),	keeps	the	entire	spec	unchanged,
and	cuts	out	all	other	roots	such	as	relations.	Some	more	real	world	usable	examples:	Return	only	enough	data	to	form	the	full	ref	of	each	entity:	/entities/by-query?fields=kind,metadata.namespace,metadata.name	Ordering​	By	default	the	entities	are	returned	ordered	by	their	internal	uid.	You	can	customize	the	orderField	query	parameters	to	affect
that	ordering.	For	example,	to	return	entities	by	their	name:	/entities/by-query?orderField=metadata.name,asc	Each	parameter	can	be	followed	by	asc	for	ascending	lexicographical	order	or	desc	for	descending	(reverse)	lexicographical	order.	Pagination​	You	may	pass	the	cursor	query	parameters	to	perform	cursor	based	pagination	through	the	set	of
entities.	The	value	of	cursor	will	be	returned	in	the	response,	under	the	pageInfo	property:	"pageInfo":	{	"nextCursor":	"a-cursor",	"prevCursor":	"another-cursor"	}	If	nextCursor	exists,	it	can	be	used	to	retrieve	the	next	batch	of	entities.	Following	the	same	approach,	if	prevCursor	exists,	it	can	be	used	to	retrieve	the	previous	batch	of	entities.	filter,
for	selecting	only	a	subset	of	all	entities	fields,	for	selecting	only	parts	of	the	full	data	structure	of	each	entity	limit	for	limiting	the	number	of	entities	returned	(20	is	the	default)	orderField,	for	deciding	the	order	of	the	entities	fullTextFilter	NOTE:	[filter,	orderField,	fullTextFilter]	and	cursor	are	mutually	exclusive.	This	means	that,	it	isn't	possible	to
change	any	of	[filter,	orderField,	fullTextFilter]	when	passing	cursor	as	query	parameters,	as	changing	any	of	these	properties	will	affect	pagination.	If	any	of	filter,	orderField,	fullTextFilter	is	specified	together	with	cursor,	only	the	latter	is	taken	into	consideration.	GET	/entities​	Lists	entities.	The	endpoint	supports	the	following	query	parameters,
described	in	sections	below:	The	return	type	is	JSON,	as	an	array	of	Entity.	Filtering​	You	can	pass	in	one	or	more	filter	sets	that	get	matched	against	each	entity.	Each	filter	set	is	a	number	of	conditions	that	all	have	to	match	for	the	condition	to	be	true	(conditions	effectively	have	an	AND	between	them).	At	least	one	filter	set	has	to	be	true	for	the
entity	to	be	part	of	the	result	set	(filter	sets	effectively	have	an	OR	between	them).	Example:	/entities?filter=kind=user,metadata.namespace=default&filter=kind=group,spec.type	Return	entities	that	match	Filter	set	1:	Condition	1:	kind	=	user	AND	Condition	2:	metadata.namespace	=	default	OR	Filter	set	2:	Condition	1:	kind	=	group	AND	Condition
2:	spec.type	exists	Each	condition	is	either	on	the	form	,	or	on	the	form	=.	The	first	form	asserts	on	the	existence	of	a	certain	key	(with	any	value),	and	the	second	asserts	that	the	key	exists	and	has	a	certain	value.	All	checks	are	always	case	insensitive.	In	all	cases,	the	key	is	a	simplified	JSON	path	in	a	given	piece	of	entity	data.	Each	part	of	the	path
is	a	key	of	an	object,	and	the	traversal	also	descends	through	arrays.	There	are	two	special	forms:	Array	items	that	are	simple	value	types	(such	as	strings)	match	on	a	key-value	pair	where	the	key	is	the	item	as	a	string,	and	the	value	is	the	string	true	Relations	can	be	matched	on	a	relations.=	form	Let's	look	at	a	simplified	example	to	illustrate	the
concept:	{	"a":	{	"b":	["c",	{	"d":	1	}],	"e":	7	}}	This	would	match	any	one	of	the	following	conditions:	a	a.b	a.b.c	a.b.c=true	a.b.d	a.b.d=1	a.e	a.e=7	Some	more	real	world	usable	examples:	Return	all	orphaned	entities:	/entities?filter=metadata.annotations.backstage.io/orphan=true	Return	all	users	and	groups:	/entities?
filter=kind=user&filter=kind=group	Return	all	service	components:	/entities?filter=kind=component,spec.type=service	Return	all	entities	with	the	java	tag:	/entities?filter=metadata.tags.java	Return	all	users	who	are	members	of	the	ops	group	(note	that	the	full	reference	of	the	group	is	used):	/entities?
filter=kind=user,relations.memberof=group:default/ops	Field	selection​	By	default	the	full	entities	are	returned,	but	you	can	pass	in	a	fields	query	parameter	which	selects	what	parts	of	the	entity	data	to	retain.	This	makes	the	response	smaller	and	faster	to	transfer,	and	may	allow	the	catalog	to	perform	more	efficient	queries.	The	query	parameter
value	is	a	comma	separated	list	of	simplified	JSON	paths	like	above.	Each	path	corresponds	to	the	key	of	either	a	value,	or	of	a	subtree	root	that	you	want	to	keep	in	the	output.	The	rest	is	pruned	away.	For	example,	specifying	?fields=metadata.name,metadata.annotations,spec	retains	only	the	name	and	annotations	fields	of	the	metadata	of	each
entity	(it'll	be	an	object	with	at	most	two	keys),	keeps	the	entire	spec	unchanged,	and	cuts	out	all	other	roots	such	as	relations.	Some	more	real	world	usable	examples:	Return	only	enough	data	to	form	the	full	ref	of	each	entity:	/entities?fields=kind,metadata.namespace,metadata.name	Ordering​	By	default	the	entities	are	returned	in	an	undefined,	but
stable	order.	You	can	pass	in	one	or	more	order	query	parameters	to	affect	that	ordering.	Each	parameter	starts	either	with	asc:	for	ascending	lexicographical	order	or	desc:	for	descending	(reverse)	lexicographical	order,	followed	by	a	dot-separated	path	into	an	entity's	keys.	The	ordering	is	case	insensitive.	If	more	than	one	order	directive	is	given,
later	directives	have	lower	precedence	(they	are	applied	only	when	directives	of	higher	precedence	have	equal	values).	Example:	/entities?order=asc:kind&order=desc:metadata.name	This	will	order	the	output	first	by	kind	ascending,	and	then	within	each	kind	(if	there's	more	than	one	of	a	given	kind)	by	their	name	descending.	When	given	a	field
that	does	NOT	exist	on	all	entities	in	the	result	set,	those	entities	that	do	not	have	the	field	will	always	be	sorted	last	in	that	particular	order	step,	no	matter	what	the	desired	order	was.	Pagination​	You	may	pass	the	offset	and	limit	query	parameters	to	do	classical	pagination	through	the	set	of	entities.	There	is	also	an	after	query	parameter	to	return
the	next	page	of	results	after	the	previous	one	when	performing	cursor	based	pagination.	Each	paginated	response	that	has	a	next	page	of	data,	will	have	a	Link,	rel="next"	header	pointing	to	the	query	path	to	the	next	page.	Example:	Getting	the	first	page:	GET	/entities?limit=2HTTP/1.1	200	OKlink:	;	rel="next"[{"metadata":{...	Getting	the	next
page,	since	we	detect	the	presence	of	the	Link	header:	GET	/entities?limit=2&after=eyJsaW1pdCI6Miwib2Zmc2V0IjoyfQ%3D%3DHTTP/1.1	200	OKlink:	;	rel="next"[{"metadata":{...	GET	/entities/by-uid/​	Gets	an	entity	by	its	metadata.uid	field	value.	The	return	type	is	JSON,	as	a	single	Entity,	or	a	404	error	if	there	was	no	entity	with	that	UID.
DELETE	/entities/by-uid/​	Deletes	an	entity	by	its	metadata.uid	field	value.	Note:	This	method	of	deletion	is	appropriate	for	orphaned	entities,	but	not	for	removal	of	"live"	entities	that	are	actively	being	updated	by	a	location.	Please	read	below.	The	most	common	user	flow	is	that	you	register	a	location	(see	below),	and	then	the	catalog	keeps	itself	up
to	date	with	that	location	and	the	subtree	of	things	that	may	spawn	from	it.	This	means	that	the	catalog	is	a	live-updating	view	of	an	actual	authoritative	data	source.	If	there's	something	keeping	the	entity	"alive"	in	the	catalog,	it	will	just	reappear	shortly	after	deletion	with	the	method	described	in	this	section.	To	properly	remove	entities,	you
typically	want	to	instead	unregister	the	location	that	causes	the	entity	to	appear.	However	if	you	have	an	orphaned	entity,	for	example	after	removing	the	reference	to	its	file	from	a	Location	entity,	or	if	a	processor	has	stopped	producing	your	entity,	then	this	deletion	method	is	appropriate.	The	return	type	is	always	an	empty	204	response,	whether
an	entity	with	this	UID	existed	or	not.	GET	/entities/by-name///​	Gets	an	entity	by	its	kind,	metadata.namespace,	and	metadata.name	field	value.	These	are	special	in	that	they	form	the	entity's	unique	reference	triplet.	The	return	type	is	JSON,	as	a	single	Entity,	or	a	404	error	if	there	was	no	entity	with	that	reference	triplet.	GET	/entities/by-
name/{kind}/{namespace}/{name}/ancestry​	Get	an	entity's	ancestry	by	entity	ref.	POST	/entities/by-refs​	Gets	a	batch	of	entities	by	their	entity	refs.	This	is	useful	in	contexts	where	you	want	to	fetch	a	large	number	of	specific	entities	efficiently,	for	example	in	GraphQL	resolvers.	The	request	body	is	JSON,	on	the	form	{	"entityRefs":
["component:default/foo",	"api:default/bar"],	"fields":	["kind",	"metadata.name"]}	where	each	entityRefs	entry	is	an	entity	ref	that	you	want	to	fetch.	The	fields	array	is	optional	and	works	the	same	way	as	the	GET	/entities	fields	above,	e.g.	it's	used	to	fetch	only	certain	slices	of	each	entity.	The	return	type	is	JSON,	on	the	form	{	"items":	[{	"kind":
"Component",	"metadata":	{	"name":	"foo"	}	},	null]}	where	the	items	array	has	the	same	length	and	the	same	order	as	the	input	entityRefs	array.	Each	element	contains	the	corresponding	entity	data,	or	null	if	no	entity	existed	in	the	catalog	with	that	ref.	POST	/refresh​	Refresh	the	entity	related	to	entityRef.	Request	body	is	JSON,	on	the	form	{
"entityRef":	""}	POST	/validate-entity​	Validate	that	a	passed	in	entity	has	no	errors	in	schema.	Request	body	is	JSON,	on	the	form	{	"location":	"",	"entity":	{}}	Locations​	GET	/locations​	Lists	locations.	Response	type	is	JSON,	on	the	form	[	{	"data":	{	"id":	"b9784c38-7118-472f-9e22-5638fc73bab0",	"target":	"	,	"type":	"url"	}	}]	GET	/locations/{id}​	Gets
a	location	by	it's	location	ID.	Response	type	is	JSON,	on	the	form	{	"id":	"b9784c38-7118-472f-9e22-5638fc73bab0",	"target":	"	,	"type":	"url"}	GET	/locations/by-entity/{kind}/{namespace}/{name}​	Gets	a	location	referring	to	a	given	entity.	Response	type	is	JSON,	on	the	form	{	"id":	"b9784c38-7118-472f-9e22-5638fc73bab0",	"target":	"	,	"type":	"url"}
GET	/entity-facets?facet=&facet=&filter=&filter=​	Get	all	entity	facets	that	match	the	given	filters.	Response	type	is	JSON,	on	the	form	{	"facets":	[	{	"value":	"",	"count":	1	}	]}	POST	/locations​	Adds	a	location	to	be	ingested	by	the	catalog.	If	successful	the	response	code	will	be	HTTP/1.1	201	Created	and	a	JSON	on	the	form	{	"entities":	[],	"location":
{	"id":	"b9784c38-7118-472f-9e22-5638fc73bab0",	"target":	"	,	"type":	"url"	}}	If	the	location	already	exists	the	response	will	be	HTTP/1.1	409	Conflict	and	a	JSON	on	the	form	{	"error":	{	"message":	"Location	url:	already	exists",	"name":	"ConflictError",	"stack":	"ConflictError:	Location	url:	already	exists..."	},	"request":	{	"method":	"POST",	"url":
"/locations"	},	"response":	{	"statusCode":	409	}}	Supports	the	?dryRun=true	query	parameter,	which	will	perform	validation	and	not	write	anything	to	the	database.	In	the	event	of	successfully	passing	validation,	the	entities	field	of	the	response	JSON	will	be	populated	with	entities	present	in	the	location.	POST	/analyze-location​	Validate	a	given
location.	Request	body	is	JSON,	on	the	form	{	"location":	{	"type":	"",	"target":	""	},	"catalogFileName":	""}	And	Response	type	is	JSON,	on	the	form	{	"generateEntities":	[	{	"fields":	[	{	"description":	"",	"value":	"",	"state":	"needsUserInput",	"field":	""	},	{	"description":	"",	"value":	{},	"state":	"analysisSuggestedNoValue",	"field":	""	}	],	"entity":	{}	}	],
"existingEntityFiles":	[	{	"entity":	"",	"isRegistered":	"",	"location":	{	"target":	"",	"type":	""	}	}	]}	DELETE	/locations/{id}​	Delete	a	location	by	its	id.	On	success	response	code	will	be	HTTP/1.1	204	No	Content.	Other​	TODO	Find	thousands	of	job	opportunities	by	signing	up	to	eFinancialCareers	today.	You	can’t	perform	that	action	at	this	time.	A	hands-
on	walk-through	of	installing	and	configuring	a	Backstage	App	for	our	use.What	is	Backstage?Backstage	is	an	open	platform	for	building	developer	portals.	Powered	by	a	centralized	software	catalog,	Backstage	restores	order	to	your	microservices	and	infrastructure	and	enables	your	product	teams	to	ship	high-quality	code	quickly	—	without
compromising	autonomy.Backstage	unifies	all	your	infrastructure	tooling,	services,	and	documentation	to	create	a	streamlined	development	environment	from	end	to	end.—	What	is	Backstage?Why	Backstage?Getting	StartedThe	Backstage	Getting	Started	document	provides	us	with	a	Backstage	App	(project)	with	sample	data.	To	understand	the
sample	data,	it	is	useful	to	examine	the	entity	relationship	diagram	(ERD)	and	entities	for	Backstage.There	are	the	three	“leaf”	entities:	Components,	APIs,	and	Resources:A	component	is	a	piece	of	software,	for	example	a	mobile	feature,	web	site,	backend	service	or	data	pipeline	(list	not	exhaustive).	A	component	can	be	tracked	in	source	control,	or
use	some	existing	open	source	or	commercial	software.APIs	form	an	important	(maybe	the	most	important)	abstraction	that	allows	large	software	ecosystems	to	scale.	Thus,	APIs	are	a	first	class	citizen	in	the	Backstage	model	and	the	primary	way	to	discover	existing	functionality	in	the	ecosystem.Resources	are	the	infrastructure	a	component	needs
to	operate	at	runtime,	like	BigTable	databases,	Pub/Sub	topics,	S3	buckets	or	CDNs.	Modelling	them	together	with	components	and	systems	will	better	allow	us	to	visualize	resource	footprint,	and	create	tooling	around	them.The	System	and	Domain	entities	are	used	in	organizing	the	“leaf”	entities.With	increasing	complexity	in	software,	systems	form
an	important	abstraction	level	to	help	us	reason	about	software	ecosystems.	Systems	are	a	useful	concept	in	that	they	allow	us	to	ignore	the	implementation	details	of	a	certain	functionality	for	consumers,	while	allowing	the	owning	team	to	make	changes	as	they	see	fit	(leading	to	low	coupling).While	systems	are	the	basic	level	of	encapsulation	for
related	entities,	it	is	often	useful	to	group	a	collection	of	systems	that	share	terminology,	domain	models,	metrics,	KPIs,	business	purpose,	or	documentation,	i.e.	they	form	a	bounded	context.—	System	ModelThe	Software	Template	entity	does	not	have	any	relationships	to	other	entities,	but	is	rather	used	in	the	process	to	create	Components.The
Software	Templates	part	of	Backstage	is	a	tool	that	can	help	you	create	Components	inside	Backstage.	By	default,	it	has	the	ability	to	load	skeletons	of	code,	template	in	some	variables,	and	then	publish	the	template	to	some	locations	like	GitHub	or	GitLab.—	Backstage	Software	TemplatesThe	User	and	Group	entities	are	used	in	building	ownership
relationships	to	other	entities.An	ownership	relation	where	the	owner	is	usually	an	organizational	entity	(User	or	Group),	and	the	other	entity	can	be	anything.In	Backstage,	the	owner	of	an	entity	is	the	singular	entity	(commonly	a	team)	that	bears	ultimate	responsibility	for	the	entity,	and	has	the	authority	and	capability	to	develop	and	maintain	it.
They	will	be	the	point	of	contact	if	something	goes	wrong,	or	if	features	are	to	be	requested.	The	main	purpose	of	this	relation	is	for	display	purposes	in	Backstage,	so	that	people	looking	at	catalog	entities	can	get	an	understanding	of	to	whom	this	entity	belongs.	It	is	not	to	be	used	by	automated	processes	to	for	example	assign	authorization	in
runtime	systems.	There	may	be	others	that	also	develop	or	otherwise	touch	the	entity,	but	there	will	always	be	one	ultimate	owner.This	relation	is	commonly	generated	based	on	spec.owner	of	the	owned	entity,	where	present.—	Well-known	Relations	between	Catalog	EntitiesThe	remaining	entity,	Locations,	does	not	appear	to	have	any	relationship
with	other	entities	and	the	documentation	on	it	is	scarce.A	Location	reference	that	points	to	the	source	code	of	the	entity	(typically	a	Component).	Useful	when	catalog	files	do	not	get	ingested	from	the	source	code	repository	itself.—	Well-known	Annotations	on	Catalog	EntitiesGetting	Started,	configuring	BackstageThe	Backstage	Getting	Started,
configuring	Backstage	document	walks	us	through	several	common	configuration	tasks.Install	and	configure	PostgreSQLIn	the	Getting	Started	document,	we	used	a	temporary	SQLite	database	to	support	the	Backstage	App;	in	this	document	we	transition	to	using	a	permanent	PostgreSQL	database.Rather	than	installing	PostgreSQL	onto	our
workstation,	it	is	easier	to	run	it	in	a	Docker	container.	Here	we	can	create	a	file,	docker-compose.yml,	in	the	Backstage	App	folder.	This	file	is	based	off	the	instructions	provided	for	the	official	postgres	Docker	image;	except	here	we	also	expose	the	PostgreSQL	database	to	our	workstation	on	port	5432.eWe	start	PostgresSQL	by	typing:$	docker-
compose	up	-dWe	can	continue	through	the	document	through	updating	the	app-config.yaml	file	with	the	updated	database	configuration.	Because	it	bad	practice	to	commit	secrets	into	source	control,	we	can	create	a	new	file,	environment.sh,	in	the	Backstage	App	folder	as	follows	and	add	it	to	the	.gitignore	file	in	the	same	folder.We	can	set	the
environment	variables	and	start	the	Backstage	App	using	the	following	commands.$	source	environment.sh$	yarn	devGoing	forward,	when	we	start	the	Backstage	App,	we	will	use	these	commands.Setting	up	authenticationFollowing	the	document,	we	will	use	GitHub	for	authentication.	Here,	however,	we	use	a	GitHub	Organization	account	instead	of
a	Personal	account.Your	team	can	collaborate	on	GitHub	by	using	an	organization	account.	Each	person	that	uses	GitHub	signs	into	a	user	account.	Multiple	user	accounts	can	collaborate	on	shared	projects	by	joining	the	same	organization	account,	which	owns	the	repositories.	A	subset	of	these	user	accounts	can	be	given	the	role	of	organization
owner,	which	allows	those	people	to	granularly	manage	access	to	the	organization’s	resources	using	sophisticated	security	and	administrative	features.—	About	organizationsWhen	creating	the	GitHub	OAuth	App,	we	be	sure	to	use	localhost	instead	of	127.0.0.1	in	the	URLs;	the	document	is	inconsistent	in	this	regard.Also	instead	of	adding	the	Client
Id	and	Secret	to	the	app-config.yaml,	we	rather	add	it	to	environment.sh	file	as	follows.We	then	update	app-config.yaml;	updating	the	root	auth	key.The	last	step,	a	bit	unusual,	requires	us	to	modify	the	React	code	to	support	GitHub	authentication.	Once	done,	we	start	the	Backstage	App	and	find	that	we	have	to	authenticate	now.Observations:We
first	observe	that	by	using	the	Settings	menu	option,	we	can	see	who	we	are	logged	in	with;	presumably	seeing	our	name	(and	maybe	avatar	image)The	list	of	sample	User	entities	does	not	list	ourselvesIt	is	easy	to	miss,	but	before	we	enabled	authentication	we	saw	that	we	owned	a	number	of	Components	as	we	were	associated	with	the	guest	User
entity.	After	we	enabled	authentication,	we	own	no	Components;	thus	we	are	not	associated	with	the	guest	User	entitySetting	up	a	GitHub	IntegrationContinuing	to	follow	the	document,	we	setup	an	integration	to	our	GitHub	organization.	As	we	have	a	GitHub	Organization	account,	we	will	use	a	GitHub	App	instead	of	a	Personal	Access
Token.Backstage	can	be	configured	to	use	GitHub	Apps	for	backend	authentication.	This	comes	with	advantages	such	as	higher	rate	limits	and	that	Backstage	can	act	as	an	application	instead	of	a	user	or	bot	account.—	GitHub	Apps	for	Backend	AuthenticationWe	follow	the	steps	in	Using	the	CLI	(public	GitHub	only)	and	Including	in	Integrations
Config	in	the	documentation;	GitHub	Apps	for	Backend	Authentication.We,	additionally,	update	the	GitHub	App	permissions.App	permissions	is	not	managed	by	Backstage.	They’re	created	with	some	simple	default	permissions	which	you	are	free	to	change	as	you	need,	but	you	will	need	to	update	them	in	the	GitHub	web	console,	not	in	Backstage
right	now.	The	permissions	that	are	defaulted	are	metadata:read	and	contents:read.—	GitHub	Apps	for	Backend	AuthenticationThe	full	list	of	required	App	permissions	is	provided.Login	and	Backstage	and	check	profileAfter	starting	the	Backstage	App,	we	can	finish	up	by	following	the	instructions	Login	to	Backstage	and	check	profile.Next	StepsIn
the	next	article,	Backstage	by	Example	(Part	2),	we	clean-up	the	Backstage	App	for	our	use.	You	can’t	perform	that	action	at	this	time.


