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Newton’s	Laws	of	Motion	form	the	cornerstone	of	classical	mechanics,	a	fundamental	branch	of	physics	that	deals	with	the	behavior	of	objects	in	motion.	These	laws,	formulated	by	Sir	Isaac	Newton	in	the	17th	century,	have	profound	implications	in	the	field	of	engineering,	particularly	in	dynamics	and	control.	Understanding	these	laws	is	crucial	for
engineers	as	they	provide	the	foundational	principles	for	analyzing	and	designing	systems	that	involve	motion.	From	the	simplest	mechanical	devices	to	complex	aerospace	systems,	Newton’s	Laws	of	Motion	are	indispensable	tools	that	enable	engineers	to	predict	and	control	the	behavior	of	physical	systems.	Fundamentals	Newton’s	First	Law	of
Motion	Also	known	as	the	Law	of	Inertia,	Newton’s	First	Law	states	that	an	object	will	remain	at	rest	or	in	uniform	motion	in	a	straight	line	unless	acted	upon	by	an	external	force.	This	principle	highlights	the	concept	of	inertia,	which	is	the	tendency	of	an	object	to	resist	changes	in	its	state	of	motion.	Newton’s	Second	Law	of	Motion	Newton’s	Second
Law	provides	a	quantitative	description	of	the	changes	that	a	force	can	produce	on	the	motion	of	an	object.	It	states	that	the	acceleration	of	an	object	is	directly	proportional	to	the	net	force	acting	on	it	and	inversely	proportional	to	its	mass.	Mathematically,	it	is	expressed	as:	F	=	ma	where	F	is	the	net	force,	m	is	the	mass,	and	a	is	the	acceleration.
Newton’s	Third	Law	of	Motion	Newton’s	Third	Law	states	that	for	every	action,	there	is	an	equal	and	opposite	reaction.	This	means	that	forces	always	occur	in	pairs;	if	one	object	exerts	a	force	on	another,	the	second	object	exerts	an	equal	and	opposite	force	on	the	first.	Key	Terms	Inertia:	The	resistance	of	an	object	to	any	change	in	its	state	of
motion.	Force:	An	interaction	that	causes	an	object	to	change	its	velocity,	direction,	or	shape.	Mass:	A	measure	of	the	amount	of	matter	in	an	object,	which	also	determines	its	resistance	to	acceleration.	Acceleration:	The	rate	of	change	of	velocity	of	an	object.	Historical	Development	The	development	of	Newton’s	Laws	of	Motion	marked	a	significant
milestone	in	the	history	of	science	and	engineering.	Before	Newton,	the	understanding	of	motion	was	largely	based	on	the	works	of	Aristotle,	who	believed	that	a	force	was	necessary	to	maintain	motion.	This	view	was	challenged	by	Galileo	Galilei	in	the	early	17th	century,	who	conducted	experiments	that	demonstrated	the	concept	of	inertia.	Sir	Isaac
Newton	built	upon	Galileo’s	work	and	formulated	his	three	laws	of	motion,	which	he	published	in	his	seminal	work,	Philosophiæ	Naturalis	Principia	Mathematica,	in	1687.	This	work	not	only	laid	the	foundation	for	classical	mechanics	but	also	revolutionized	the	way	scientists	and	engineers	understood	the	physical	world.	Newton’s	contributions	have
had	a	lasting	impact,	influencing	countless	advancements	in	various	fields	of	science	and	engineering.	Applications	Newton’s	Laws	of	Motion	have	a	wide	range	of	practical	applications	across	various	industries	and	fields.	Here	are	some	notable	examples:	Automotive	Engineering	In	automotive	engineering,	Newton’s	Second	Law	is	used	to	design	and
analyze	the	performance	of	vehicles.	Engineers	use	this	law	to	calculate	the	forces	required	for	acceleration,	braking,	and	cornering.	For	instance,	understanding	the	relationship	between	force,	mass,	and	acceleration	helps	in	optimizing	engine	performance	and	fuel	efficiency.	Aerospace	Engineering	Newton’s	Laws	are	fundamental	in	aerospace
engineering	for	designing	and	controlling	aircraft	and	spacecraft.	The	principles	of	motion	are	used	to	calculate	the	thrust	required	for	takeoff,	the	forces	acting	on	an	aircraft	during	flight,	and	the	trajectories	of	spacecraft.	Newton’s	Third	Law	is	particularly	important	in	rocketry,	where	the	expulsion	of	exhaust	gases	generates	the	thrust	needed	to
propel	the	rocket.	Robotics	In	robotics,	Newton’s	Laws	are	applied	to	design	and	control	robotic	systems.	Engineers	use	these	principles	to	model	the	dynamics	of	robots,	predict	their	motion,	and	develop	control	algorithms.	For	example,	understanding	the	forces	and	torques	acting	on	a	robotic	arm	is	essential	for	precise	manipulation	and	movement.
Structural	Engineering	Newton’s	Laws	are	also	crucial	in	structural	engineering	for	analyzing	the	forces	acting	on	buildings,	bridges,	and	other	structures.	Engineers	use	these	principles	to	ensure	that	structures	can	withstand	various	loads	and	forces,	such	as	wind,	earthquakes,	and	traffic.	Advanced	Topics	Nonlinear	Dynamics	While	Newton’s	Laws
provide	a	solid	foundation	for	understanding	motion,	many	real-world	systems	exhibit	nonlinear	behavior	that	requires	more	advanced	analysis.	Nonlinear	dynamics	involves	the	study	of	systems	where	the	relationship	between	variables	is	not	proportional.	This	field	has	applications	in	areas	such	as	chaos	theory,	fluid	dynamics,	and	control	systems.
Control	Theory	Control	theory	is	an	advanced	field	that	deals	with	the	behavior	of	dynamical	systems	and	the	design	of	controllers	to	achieve	desired	performance.	Newton’s	Laws	are	integral	to	developing	mathematical	models	of	systems,	which	are	then	used	to	design	control	strategies.	Recent	research	in	control	theory	includes	adaptive	control,
robust	control,	and	optimal	control,	which	aim	to	improve	the	performance	and	stability	of	complex	systems.	Computational	Mechanics	With	the	advent	of	powerful	computers,	computational	mechanics	has	become	an	essential	tool	for	solving	complex	problems	in	dynamics	and	control.	Numerical	methods	and	simulations	based	on	Newton’s	Laws	are
used	to	analyze	and	predict	the	behavior	of	systems	that	are	difficult	to	solve	analytically.	This	approach	is	widely	used	in	fields	such	as	finite	element	analysis,	computational	fluid	dynamics,	and	multibody	dynamics.	Despite	their	wide	applicability,	Newton’s	Laws	of	Motion	have	certain	limitations	and	challenges:	Relativistic	Effects	Newton’s	Laws
are	based	on	classical	mechanics	and	are	not	accurate	at	very	high	speeds,	close	to	the	speed	of	light.	In	such	cases,	relativistic	mechanics,	as	described	by	Einstein’s	theory	of	relativity,	must	be	used.	Quantum	Effects	At	the	microscopic	scale,	Newton’s	Laws	do	not	accurately	describe	the	behavior	of	particles.	Quantum	mechanics	provides	a	more
accurate	framework	for	understanding	the	motion	and	interactions	of	subatomic	particles.	Complex	Systems	Many	real-world	systems	are	highly	complex	and	involve	multiple	interacting	components.	Analyzing	and	controlling	such	systems	can	be	challenging	due	to	the	nonlinear	and	dynamic	nature	of	their	behavior.	Advanced	techniques	in	systems
engineering	and	control	theory	are	often	required	to	address	these	challenges.	Environmental	Factors	External	factors	such	as	friction,	air	resistance,	and	temperature	can	affect	the	motion	of	objects	and	must	be	considered	in	practical	applications.	Engineers	often	need	to	account	for	these	factors	to	ensure	accurate	predictions	and	reliable
performance.	Conclusion	Newton’s	Laws	of	Motion	are	fundamental	principles	that	underpin	the	field	of	dynamics	and	control	in	engineering.	These	laws	provide	the	essential	tools	for	analyzing	and	predicting	the	behavior	of	physical	systems,	enabling	engineers	to	design	and	control	a	wide	range	of	applications,	from	vehicles	and	aircraft	to	robots
and	structures.	While	there	are	challenges	and	limitations	associated	with	these	laws,	ongoing	research	and	advancements	in	related	fields	continue	to	expand	our	understanding	and	capabilities.	The	importance	of	Newton’s	Laws	in	engineering	cannot	be	overstated,	as	they	remain	a	cornerstone	of	classical	mechanics	and	a	vital	component	of
modern	engineering	practice.	Newton’s	Second	Law	of	Motion	is	a	fundamental	principle	that	describes	the	relationship	between	force,	mass,	and	acceleration.	This	guide	breaks	down	the	law	into	easily	understandable	terms,	complemented	by	practical	examples.	Ideal	for	educational	purposes,	it	explains	how	this	law	is	pivotal	in	understanding	the
mechanics	of	motion.	From	everyday	occurrences	to	complex	scientific	phenomena,	this	guide	illustrates	the	law’s	applications,	making	it	a	vital	resource	for	teachers	and	students	delving	into	physics.	What	is	Newton’s	Second	Law	of	Motion	–	Definition	Newton’s	Second	Law	of	Motion	states	that	the	force	acting	on	an	object	is	equal	to	the	mass	of
that	object	multiplied	by	its	acceleration.	This	law	quantifies	the	concept	of	force	and	provides	a	formula	for	calculating	how	forces	affect	the	motion	of	objects.	It	is	a	key	concept	in	physics,	offering	a	mathematical	framework	for	understanding	how	and	why	objects	move	the	way	they	do.	What	is	the	Best	Example	of	Newton’s	Second	Law	of	Motion?
A	classic	example	of	Newton’s	Second	Law	is	a	car	accelerating	on	a	road.	The	force	applied	by	the	car’s	engine	produces	an	acceleration	that	is	directly	proportional	to	the	force	and	inversely	proportional	to	the	mass	of	the	car.	This	example	demonstrates	how	varying	the	force	or	the	mass	can	affect	the	acceleration	of	an	object.	Newton’s	Second
Law	of	Motion	Formula	This	formula	is	a	fundamental	equation	in	physics,	used	to	calculate	how	much	force	is	needed	to	move	an	object	at	a	certain	acceleration,	or	conversely,	to	determine	the	acceleration	that	a	given	force	will	produce	on	an	object	of	a	certain	mass.	F	=	ma	Where:	“F”	represents	the	force	applied	to	an	object.	“m”	stands	for	the
mass	of	the	object.	“a”	denotes	the	acceleration	of	the	object.	Newton’s	Second	Law	of	Motion	Unit	Newton’s	Second	Law	of	Motion,	represented	by	the	equation	F	=	ma	(Force	equals	mass	times	acceleration),	establishes	a	foundational	relationship	in	physics,	linking	force,	mass,	and	acceleration.	The	standard	unit	of	force,	as	derived	from	this	law,
is	the	Newton	(N),	which	is	a	compound	unit	composed	of	the	units	for	mass	and	acceleration.	Specifically,	one	Newton	is	equivalent	to	the	force	required	to	accelerate	one	kilogram	of	mass	at	the	rate	of	one	meter	per	second	squared(1	N	=	1	kg·m/s²).	22	Newton’s	Second	Law	of	Motion	Examples	Newton’s	Second	Law	of	Motion,	encapsulating	the
relationship	between	force,	mass,	and	acceleration,	is	a	pivotal	concept	in	understanding	the	dynamics	of	motion.	This	collection	of	22	examples	illuminates	the	law’s	application	in	various	contexts,	providing	a	comprehensive	perspective	for	educators.	Each	example	highlights	how	changes	in	force	and	mass	influence	acceleration,	demonstrating	the
law’s	practical	relevance.	From	everyday	occurrences	to	complex	technological	systems,	these	instances	serve	as	invaluable	teaching	aids,	enhancing	students’	grasp	of	this	fundamental	physical	principle.	Pushing	a	Shopping	Cart:	More	force	is	required	to	accelerate	a	full	cart	than	an	empty	one.	Kicking	a	Soccer	Ball:	The	harder	the	kick	(force),	the
faster	the	ball	accelerates.	Driving	a	Car:	Acceleration	increases	with	more	engine	force;	heavier	cars	need	more	force.	Shooting	a	Basketball:	Varying	the	shooting	force	changes	the	ball’s	acceleration.	Launching	a	Rocket:	Tremendous	force	is	required	to	accelerate	the	massive	rocket.	Swinging	a	Golf	Club:	The	club’s	force	determines	the	ball’s
acceleration	and	distance.	Pulling	a	Wagon:	More	force	is	needed	to	accelerate	a	wagon	with	passengers.	Bicycling	Uphill:	Requires	more	force	compared	to	level	ground	for	the	same	acceleration.	Skydiving:	The	force	of	gravity	accelerates	the	diver	until	air	resistance	balances	it.	Using	a	Sling	Shot:	Stretching	it	more	(applying	more	force)
accelerates	the	projectile	faster.	Hitting	a	Baseball:	The	bat’s	force	affects	the	ball’s	speed	and	trajectory.	Rowing	a	Boat:	Force	applied	on	the	oars	determines	the	boat’s	acceleration.	Jumping	from	a	Height:	The	force	upon	landing	is	greater	for	heavier	individuals.	Elevator	Movement:	More	force	is	needed	for	faster	acceleration	or	heavier	loads.
Throwing	a	Dart:	The	acceleration	of	the	dart	depends	on	the	throwing	force.	Skating	on	Ice:	Pushing	harder	against	the	ice	results	in	faster	acceleration.	Starting	a	Lawnmower:	The	pull	force	affects	the	starter	cord’s	acceleration.	Accelerating	a	Motorcycle:	More	throttle	applies	greater	force,	increasing	acceleration.	Bowling:	The	force	imparted
determines	the	ball’s	speed.	Snowboarding	Downhill:	Gravitational	force	accelerates	the	snowboarder.	A	Hammer	Striking	a	Nail:	The	hammer’s	force	determines	the	nail’s	acceleration	into	wood.	A	Catapult	Launching:	The	tension	force	dictates	the	acceleration	and	distance	of	the	projectile.	Newton’s	Second	Law	of	Motion	Examples	In	Everyday
Life	Newton’s	Second	Law	of	Motion,	illustrating	the	relationship	between	force,	mass,	and	acceleration,	is	evident	in	many	common	activities.	These	examples	shed	light	on	the	law’s	application	in	everyday	scenarios,	enhancing	its	comprehension.	By	observing	these	instances,	students	can	see	how	varying	the	force	applied	or	the	mass	of	an	object
influences	its	acceleration,	making	the	concept	more	tangible	and	relatable	in	daily	life.	Examples:	Pushing	a	Grocery	Cart:	Heavier	carts	require	more	force	to	accelerate	to	the	same	speed	as	lighter	ones.	Using	a	Hammer:	The	force	applied	to	the	hammer	influences	the	speed	it	drives	a	nail	into	wood.	Stepping	on	a	Gas	Pedal:	The	harder	you	press,
the	more	force	is	applied,	accelerating	the	car	faster.	Sliding	Furniture	Across	the	Floor:	Heavier	furniture	needs	more	force	to	achieve	the	same	acceleration	as	lighter	pieces.	Using	a	Blender:	Higher	speed	settings	apply	more	force,	causing	the	blades	to	accelerate	faster.	Newton’s	Second	Law	of	Motion	Examples	In	Real	Life	Newton’s	Second	Law
is	not	just	a	theoretical	concept;	it’s	actively	at	work	in	various	real-life	situations.	These	examples	help	illustrate	how	the	law	operates	in	practical,	everyday	contexts,	offering	clear	insights	into	the	dynamics	of	motion	and	force.	Understanding	these	applications	aids	in	connecting	theoretical	physics	to	real-world	experiences.	Examples:	Lifting
Weights:	Heavier	weights	require	more	force	to	lift	at	the	same	speed	as	lighter	ones.	Accelerating	Bicycles:	More	force	is	needed	to	accelerate	a	bike	with	a	rider	than	without.	Braking	a	Vehicle:	Heavier	vehicles	require	more	force	to	decelerate	to	a	stop	than	lighter	ones.	Watering	Plants	with	a	Hose:	Increasing	the	water	pressure	(force)
accelerates	the	water	out	of	the	hose.	Climbing	Stairs:	More	effort	(force)	is	needed	to	ascend	faster.	Newton’s	Second	Law	of	Motion	Examples	In	Daily	Life	The	principles	of	Newton’s	Second	Law	of	Motion	are	a	constant	presence	in	our	daily	lives,	guiding	the	motion	of	objects	we	interact	with.	These	examples	demonstrate	the	law’s	relevance	in
day-to-day	activities,	offering	an	intuitive	understanding	of	force,	mass,	and	acceleration.	Examples:	Pushing	a	Child	on	a	Swing:	Applying	more	force	results	in	higher	and	faster	swings.	Vacuuming	a	Rug:	More	force	is	required	to	move	the	vacuum	cleaner	over	a	thicker	rug.	Squeezing	a	Ketchup	Bottle:	The	amount	of	force	applied	determines	the
speed	of	ketchup	coming	out.	Opening	and	Closing	Doors:	Heavier	doors	require	more	force	to	open	and	close	at	the	same	speed.	Throwing	a	Ball:	The	force	behind	the	throw	affects	how	fast	and	far	the	ball	travels.	Newton’s	Second	Law	of	Motion	Examples	In	Sports	In	sports,	Newton’s	Second	Law	of	Motion	plays	a	crucial	role	in	understanding
how	athletes	and	objects	move.	These	examples	show	how	the	law	applies	in	various	sports,	providing	insights	into	how	athletes	can	optimize	their	performance	by	understanding	the	relationship	between	force,	mass,	and	acceleration.	Examples:	Baseball	Pitching:	The	force	exerted	by	the	pitcher	affects	the	ball’s	acceleration	and	speed.	Soccer	Kicks:
Kicking	the	ball	with	more	force	results	in	a	faster	and	longer	shot.	Gymnastics	Vault:	The	gymnast’s	force	against	the	vaulting	table	determines	their	acceleration	in	the	air.	Bowling:	The	force	applied	to	the	bowling	ball	influences	its	speed	and	the	power	of	the	strike.	Golf	Swings:	The	acceleration	and	distance	of	the	golf	ball	are	determined	by	the
force	of	the	swing.	Importance	of	Newton’s	Second	Law	of	Motion	Newton’s	Second	Law	of	Motion	is	a	fundamental	principle	in	physics,	providing	a	quantitative	description	of	the	dynamics	of	force	and	motion.	This	law	is	critical	for	understanding	how	forces	affect	the	motion	of	objects.	It	bridges	the	gap	between	theoretical	physics	and	practical
applications,	from	designing	vehicles	to	understanding	natural	phenomena.	The	law’s	universality	and	applicability	make	it	a	cornerstone	in	the	study	of	mechanics	and	a	crucial	tool	in	various	scientific	and	engineering	fields.	Importance	Points:	Mechanics	Foundation:	Fundamental	in	classical	mechanics	for	understanding	motion.	Engineering
Applications:	Essential	in	designing	mechanical	systems	and	structures.	Space	Exploration:	Crucial	for	calculating	spacecraft	trajectories	and	propulsion.	Safety	Mechanisms:	Helps	in	designing	vehicle	safety	features	like	airbags.	Sports	Science:	Assists	in	optimizing	athletes’	performance.	Physics	Education:	Key	concept	in	teaching	dynamics	and
forces.	Technological	Innovations:	Underpins	the	development	of	various	technologies.	Understanding	Nature:	Explains	natural	occurrences	like	tidal	movements.	Industrial	Machinery:	Guides	the	design	and	operation	of	machinery.	Medical	Equipment	Design:	Important	in	creating	devices	like	prosthetics.	Application	of	Newton’s	Second	Law	of
Motion	The	application	of	Newton’s	Second	Law	of	Motion	spans	multiple	disciplines,	offering	a	practical	framework	for	understanding	and	manipulating	forces	and	motion.	This	law	serves	as	a	guide	in	various	fields	for	predicting	the	behavior	of	objects	under	force,	aiding	in	problem-solving	and	innovation.	Application	Steps:	Identify	the	Object:
Determine	the	object	of	interest	in	a	motion	scenario.	Measure	the	Mass:	Ascertain	the	mass	of	the	object.	Determine	the	Force:	Calculate	or	measure	the	force	applied	to	the	object.	Calculate	Acceleration:	Use	the	law	(F=ma)	to	compute	acceleration.	Predict	Motion:	Predict	the	object’s	motion	based	on	calculated	acceleration.	Design	and	Test:
Apply	the	law	in	designing	systems	and	validate	with	experiments.	Optimize	Performance:	Use	the	law	to	improve	efficiency	and	effectiveness	in	systems.	Why	is	Newton’s	Second	Law	called	a	law	of	momentum?	Newton’s	Second	Law	of	Motion	is	often	referred	to	as	the	law	of	momentum	because	it	describes	the	relationship	between	force	and	the
change	in	momentum.	Momentum,	defined	as	the	product	of	mass	and	velocity	(p=mv),	is	a	key	concept	in	physics.	The	law	states	that	the	force	applied	to	an	object	is	equal	to	the	rate	of	change	of	its	momentum	(F=dt/dp​).	This	highlights	how	force	influences	an	object’s	momentum,	making	it	a	fundamental	law	in	understanding	and	analyzing	motion
and	forces.	How	do	you	verify	Newton’s	Second	Law	of	Motion?	Verifying	Newton’s	Second	Law	of	Motion	involves	a	series	of	steps	to	experimentally	demonstrate	the	relationship	between	force,	mass,	and	acceleration.	These	experiments	typically	measure	how	different	forces	affect	the	acceleration	of	objects	with	varying	masses.	Verification	Steps:
Set	Up	Experiment:	Use	a	dynamic	cart,	a	track,	and	a	pulley	system.	Measure	Mass:	Determine	the	mass	of	the	cart.	Apply	Force:	Use	hanging	weights	to	apply	a	known	force	to	the	cart.	Record	Acceleration:	Measure	the	acceleration	of	the	cart	using	sensors	or	timers.	Repeat	with	Variations:	Change	the	mass	of	the	cart	or	the	force	applied.
Analyze	Results:	Compare	the	measured	accelerations	against	the	predicted	values	from	F=ma.	Confirm	Relationship:	Verify	that	the	acceleration	is	directly	proportional	to	the	force	and	inversely	proportional	to	the	mass.	How	to	Use	Newton’s	Second	Law	to	Calculate	Acceleration	The	formula	for	Newton’s	second	law	or	the	law	of	acceleration	is	a=
F/m,	Where	a	is	the	amount	of	acceleration	(m/s^2	or	meters	per	second	squared),	F	is	the	total	amount	of	force	or	net	force	(N	or	Newtons),	and	m	is	the	total	mass	of	the	object	(kg).	Step	1:	Write	Down	the	Formula	for	Acceleration	Begin	by	writing	down	the	formula	of	acceleration	on	your	worksheet	or	a	digital	note-taking	software	of	your	choice.
This	will	help	outline	the	steps	you	will	have	to	do	and	will	provide	structure	for	your	final	output.	Step	2:	List	Out	the	Given	Variables	After	you	have	written	down	the	formula	for	acceleration,	you	must	list	out	the	given	variables	the	question	has	provided	for	you.	Listing	them	out	will	prevent	you	from	getting	confused	with	the	other	variables	in	the
question.	Step	3:	Change	and	Ensure	the	Variables	are	Using	the	Correct	Measurements	Ensure	that	each	of	the	variables	you	have	listed	is	using	the	correct	measurements	used	in	the	formula.	This	means	that	if	there	is	a	discrepancy	between	the	measurement	of	a	specific	variable	and	the	variable	used	in	the	formula,	you	will	need	to	convert	a	said
variable	into	the	correct	measurement.	Step	4:	Create	the	Equation	via	Substitution	When	you	have	ensured	that	the	variables	are	in	the	correct	measurement,	you	can	now	substitute	the	variables	into	the	solution.	Doing	the	substitution	will	create	a	working	equation	where	you	may	find	the	missing	variable.	Note	that	the	missing	variable	has	to	be
on	the	left	side	of	the	acceleration	equation,	which	means	you	must	maneuver	all	the	variables	to	the	correct	positions.	Step	5:	Answer	the	Equation	by	doing	the	correct	mathematical	operation.	Note	that	the	measurement	provided	by	the	equation	is	static,	which	means	that	if	the	question	is	asking	for	a	specific	measurement	you	will	need	to	convert
the	answer	to	the	correct	form	of	measurement.	FAQs	What	is	Newton’s	first	law	called?	Newton’s	first	law	of	motion	is	dubbed	the	law	of	inertia.	This	law	states	that	if	an	object	or	a	body	is	at	rest	it	will	continue	to	be	at	rest	unless	acted	upon	by	an	unbalanced	and	external	force.	An	example	of	this	law	in	action	is	seen	in	the	movement	of	chairs.
The	chair	will	stay	in	place	if	no	external	force	is	applied	to	it	and	will	be	in	a	state	of	rest.	But	if	an	outside	force	is	applied	to	the	chair	that	is	greater	than	the	inertia	exerted	by	the	said	chair,	then	it	will	move	to	a	specific	distance	and	direction	based	on	the	force	acting	upon	it.	Following	this	law,	if	the	chair’s	inertia	is	stronger	than	the	external
force,	then	it	will	not	move	from	its	position.	What	is	Newton’s	third	law	called?	Newton’s	third	law	of	motion	is	called	the	law	of	action	and	reaction.	This	law	indicates	that	every	force	or	action	found	in	nature	has	an	equal	and	opposite	reaction.	One	can	easily	observe	this	law	in	the	tugging	motion	of	the	game	tug-of-war.	Wherein	one	side	pulls	on
the	rope	with	a	specific	amount	of	force,	while	the	other	tries	to	pull	it	on	their	side	with	the	same	or	more	amount	of	force	in	the	opposite	direction.	This	will	cause	a	cycle	of	actions	and	reactions	in	the	form	of	pulling	and	resistance,	which	will	end	when	one	side	overcomes	the	other.	If	one	were	to	follow	this	law,	a	specific	action	creates	a	cause
while	the	reaction	is	the	effect	of	said	cause.	What	is	inertia	and	how	does	it	relate	to	Newton’s	second	law?	Inertia	is	a	specific	amount	of	force	internally	exerted	by	an	object	that	will	try	and	resist	an	external	force	that	will	change	its	position	or	direction.	This	force	affects	all	of	Newton’s	laws	of	motion	as	it	will	be	the	driving	force	of	an	object’s
resistance	to	movement	or	change	in	direction.	Both	inertia	and	gravity	affect	the	acceleration	of	a	specific	object	accelerating	in	a	single	direction,	as	it	will	try	and	resist	the	movement	brought	about	by	acceleration.	Newton’s	second	law	of	motion	or	the	law	of	acceleration	allows	people	to	understand	how	things	in	this	world	move	and	pick	up
speed	as	it	trails	in	a	single	direction.	Newton’s	second	law	in	action	has	allowed	people	to	manufacture	transportation	that	will	allow	other	people	to	traverse	large	amounts	of	distances	with	greater	ease	and	accessibility.	Therefore	it	is	important	to	understand	the	law	of	acceleration	and	how	it	affects	a	lot	of	things	in	our	everyday	life.	Laws	in
physics	about	force	and	motion	"Newton's	laws"	redirects	here.	For	other	uses,	see	Newton's	law.	"F=ma"	redirects	here.	For	the	physics	competition,	see	F=ma	exam.	Part	of	a	series	onClassical	mechanics	F	=	d	p	d	t	{\displaystyle	{\textbf	{F}}={\frac	{d\mathbf	{p}	}{dt}}}	Second	law	of	motion	History	Timeline	Textbooks	Branches	Applied
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Neumann	Physics	portal		Categoryvte	Newton's	laws	of	motion	are	three	physical	laws	that	describe	the	relationship	between	the	motion	of	an	object	and	the	forces	acting	on	it.	These	laws,	which	provide	the	basis	for	Newtonian	mechanics,	can	be	paraphrased	as	follows:	A	body	remains	at	rest,	or	in	motion	at	a	constant	speed	in	a	straight	line,
unless	it	is	acted	upon	by	a	force.	At	any	instant	of	time,	the	net	force	on	a	body	is	equal	to	the	body's	acceleration	multiplied	by	its	mass	or,	equivalently,	the	rate	at	which	the	body's	momentum	is	changing	with	time.	If	two	bodies	exert	forces	on	each	other,	these	forces	have	the	same	magnitude	but	opposite	directions.[1][2]	The	three	laws	of	motion
were	first	stated	by	Isaac	Newton	in	his	Philosophiæ	Naturalis	Principia	Mathematica	(Mathematical	Principles	of	Natural	Philosophy),	originally	published	in	1687.[3]	Newton	used	them	to	investigate	and	explain	the	motion	of	many	physical	objects	and	systems.	In	the	time	since	Newton,	new	insights,	especially	around	the	concept	of	energy,	built
the	field	of	classical	mechanics	on	his	foundations.	Limitations	to	Newton's	laws	have	also	been	discovered;	new	theories	are	necessary	when	objects	move	at	very	high	speeds	(special	relativity),	are	very	massive	(general	relativity),	or	are	very	small	(quantum	mechanics).	Newton's	laws	are	often	stated	in	terms	of	point	or	particle	masses,	that	is,
bodies	whose	volume	is	negligible.	This	is	a	reasonable	approximation	for	real	bodies	when	the	motion	of	internal	parts	can	be	neglected,	and	when	the	separation	between	bodies	is	much	larger	than	the	size	of	each.	For	instance,	the	Earth	and	the	Sun	can	both	be	approximated	as	pointlike	when	considering	the	orbit	of	the	former	around	the	latter,
but	the	Earth	is	not	pointlike	when	considering	activities	on	its	surface.[note	1]	The	mathematical	description	of	motion,	or	kinematics,	is	based	on	the	idea	of	specifying	positions	using	numerical	coordinates.	Movement	is	represented	by	these	numbers	changing	over	time:	a	body's	trajectory	is	represented	by	a	function	that	assigns	to	each	value	of	a
time	variable	the	values	of	all	the	position	coordinates.	The	simplest	case	is	one-dimensional,	that	is,	when	a	body	is	constrained	to	move	only	along	a	straight	line.	Its	position	can	then	be	given	by	a	single	number,	indicating	where	it	is	relative	to	some	chosen	reference	point.	For	example,	a	body	might	be	free	to	slide	along	a	track	that	runs	left	to
right,	and	so	its	location	can	be	specified	by	its	distance	from	a	convenient	zero	point,	or	origin,	with	negative	numbers	indicating	positions	to	the	left	and	positive	numbers	indicating	positions	to	the	right.	If	the	body's	location	as	a	function	of	time	is	s	(	t	)	{\displaystyle	s(t)}	,	then	its	average	velocity	over	the	time	interval	from	t	0	{\displaystyle
t_{0}}	to	t	1	{\displaystyle	t_{1}}	is[6]	Δ	s	Δ	t	=	s	(	t	1	)	−	s	(	t	0	)	t	1	−	t	0	.	{\displaystyle	{\frac	{\Delta	s}{\Delta	t}}={\frac	{s(t_{1})-s(t_{0})}{t_{1}-t_{0}}}.}	Here,	the	Greek	letter	Δ	{\displaystyle	\Delta	}	(delta)	is	used,	per	tradition,	to	mean	"change	in".	A	positive	average	velocity	means	that	the	position	coordinate	s	{\displaystyle	s}
increases	over	the	interval	in	question,	a	negative	average	velocity	indicates	a	net	decrease	over	that	interval,	and	an	average	velocity	of	zero	means	that	the	body	ends	the	time	interval	in	the	same	place	as	it	began.	Calculus	gives	the	means	to	define	an	instantaneous	velocity,	a	measure	of	a	body's	speed	and	direction	of	movement	at	a	single
moment	of	time,	rather	than	over	an	interval.	One	notation	for	the	instantaneous	velocity	is	to	replace	Δ	{\displaystyle	\Delta	}	with	the	symbol	d	{\displaystyle	d}	,	for	example,	v	=	d	s	d	t	.	{\displaystyle	v={\frac	{ds}{dt}}.}	This	denotes	that	the	instantaneous	velocity	is	the	derivative	of	the	position	with	respect	to	time.	It	can	roughly	be	thought	of
as	the	ratio	between	an	infinitesimally	small	change	in	position	d	s	{\displaystyle	ds}	to	the	infinitesimally	small	time	interval	d	t	{\displaystyle	dt}	over	which	it	occurs.[7]	More	carefully,	the	velocity	and	all	other	derivatives	can	be	defined	using	the	concept	of	a	limit.[6]	A	function	f	(	t	)	{\displaystyle	f(t)}	has	a	limit	of	L	{\displaystyle	L}	at	a	given
input	value	t	0	{\displaystyle	t_{0}}	if	the	difference	between	f	{\displaystyle	f}	and	L	{\displaystyle	L}	can	be	made	arbitrarily	small	by	choosing	an	input	sufficiently	close	to	t	0	{\displaystyle	t_{0}}	.	One	writes,	lim	t	→	t	0	f	(	t	)	=	L	.	{\displaystyle	\lim	_{t\to	t_{0}}f(t)=L.}	Instantaneous	velocity	can	be	defined	as	the	limit	of	the	average	velocity	as
the	time	interval	shrinks	to	zero:	d	s	d	t	=	lim	Δ	t	→	0	s	(	t	+	Δ	t	)	−	s	(	t	)	Δ	t	.	{\displaystyle	{\frac	{ds}{dt}}=\lim	_{\Delta	t\to	0}{\frac	{s(t+\Delta	t)-s(t)}{\Delta	t}}.}	Acceleration	is	to	velocity	as	velocity	is	to	position:	it	is	the	derivative	of	the	velocity	with	respect	to	time.[note	2]	Acceleration	can	likewise	be	defined	as	a	limit:	a	=	d	v	d	t	=	lim	Δ	t
→	0	v	(	t	+	Δ	t	)	−	v	(	t	)	Δ	t	.	{\displaystyle	a={\frac	{dv}{dt}}=\lim	_{\Delta	t\to	0}{\frac	{v(t+\Delta	t)-v(t)}{\Delta	t}}.}	Consequently,	the	acceleration	is	the	second	derivative	of	position,[7]	often	written	d	2	s	d	t	2	{\displaystyle	{\frac	{d^{2}s}{dt^{2}}}}	.	Position,	when	thought	of	as	a	displacement	from	an	origin	point,	is	a	vector:	a	quantity
with	both	magnitude	and	direction.[9]: 1 	Velocity	and	acceleration	are	vector	quantities	as	well.	The	mathematical	tools	of	vector	algebra	provide	the	means	to	describe	motion	in	two,	three	or	more	dimensions.	Vectors	are	often	denoted	with	an	arrow,	as	in	s	→	{\displaystyle	{\vec	{s}}}	,	or	in	bold	typeface,	such	as	s	{\displaystyle	{\bf	{s}}}	.	Often,
vectors	are	represented	visually	as	arrows,	with	the	direction	of	the	vector	being	the	direction	of	the	arrow,	and	the	magnitude	of	the	vector	indicated	by	the	length	of	the	arrow.	Numerically,	a	vector	can	be	represented	as	a	list;	for	example,	a	body's	velocity	vector	might	be	v	=	(	3			m	/	s	,	4			m	/	s	)	{\displaystyle	\mathbf	{v}	=(\mathrm	{3~m/s}
,\mathrm	{4~m/s}	)}	,	indicating	that	it	is	moving	at	3	metres	per	second	along	the	horizontal	axis	and	4	metres	per	second	along	the	vertical	axis.	The	same	motion	described	in	a	different	coordinate	system	will	be	represented	by	different	numbers,	and	vector	algebra	can	be	used	to	translate	between	these	alternatives.[9]: 4 	The	study	of	mechanics
is	complicated	by	the	fact	that	household	words	like	energy	are	used	with	a	technical	meaning.[10][11]	Moreover,	words	which	are	synonymous	in	everyday	speech	are	not	so	in	physics:	force	is	not	the	same	as	power	or	pressure,	for	example,	and	mass	has	a	different	meaning	than	weight.[12][13]: 150 	The	physics	concept	of	force	makes	quantitative
the	everyday	idea	of	a	push	or	a	pull.	Forces	in	Newtonian	mechanics	are	often	due	to	strings	and	ropes,	friction,	muscle	effort,	gravity,	and	so	forth.	Like	displacement,	velocity,	and	acceleration,	force	is	a	vector	quantity.	Artificial	satellites	move	along	curved	orbits,	rather	than	in	straight	lines,	because	of	the	Earth's	gravity.	Translated	from	Latin,
Newton's	first	law	reads,	Every	object	perseveres	in	its	state	of	rest,	or	of	uniform	motion	in	a	right	line,	unless	it	is	compelled	to	change	that	state	by	forces	impressed	thereon.[note	3]	Newton's	first	law	expresses	the	principle	of	inertia:	the	natural	behavior	of	a	body	is	to	move	in	a	straight	line	at	constant	speed.	A	body's	motion	preserves	the	status
quo,	but	external	forces	can	perturb	this.	The	modern	understanding	of	Newton's	first	law	is	that	no	inertial	observer	is	privileged	over	any	other.	The	concept	of	an	inertial	observer	makes	quantitative	the	everyday	idea	of	feeling	no	effects	of	motion.	For	example,	a	person	standing	on	the	ground	watching	a	train	go	past	is	an	inertial	observer.	If	the
observer	on	the	ground	sees	the	train	moving	smoothly	in	a	straight	line	at	a	constant	speed,	then	a	passenger	sitting	on	the	train	will	also	be	an	inertial	observer:	the	train	passenger	feels	no	motion.	The	principle	expressed	by	Newton's	first	law	is	that	there	is	no	way	to	say	which	inertial	observer	is	"really"	moving	and	which	is	"really"	standing	still.
One	observer's	state	of	rest	is	another	observer's	state	of	uniform	motion	in	a	straight	line,	and	no	experiment	can	deem	either	point	of	view	to	be	correct	or	incorrect.	There	is	no	absolute	standard	of	rest.[18][15]: 62–63 [19]: 7–9 	Newton	himself	believed	that	absolute	space	and	time	existed,	but	that	the	only	measures	of	space	or	time	accessible	to
experiment	are	relative.[20]	The	change	of	motion	of	an	object	is	proportional	to	the	force	impressed;	and	is	made	in	the	direction	of	the	straight	line	in	which	the	force	is	impressed.[15]: 114 	By	"motion",	Newton	meant	the	quantity	now	called	momentum,	which	depends	upon	the	amount	of	matter	contained	in	a	body,	the	speed	at	which	that	body	is
moving,	and	the	direction	in	which	it	is	moving.[21]	In	modern	notation,	the	momentum	of	a	body	is	the	product	of	its	mass	and	its	velocity:	p	=	m	v	,	{\displaystyle	\mathbf	{p}	=m\mathbf	{v}	\,,}	where	all	three	quantities	can	change	over	time.	In	common	cases	the	mass	m	{\displaystyle	m}	does	not	change	with	time	and	the	derivative	acts	only
upon	the	velocity.	Then	force	equals	the	product	of	the	mass	and	the	time	derivative	of	the	velocity,	which	is	the	acceleration:[22]	F	=	m	d	v	d	t	=	m	a	.	{\displaystyle	\mathbf	{F}	=m{\frac	{d\mathbf	{v}	}{dt}}=m\mathbf	{a}	\,.}	As	the	acceleration	is	the	second	derivative	of	position	with	respect	to	time,	this	can	also	be	written	F	=	m	d	2	s	d	t	2	.
{\displaystyle	\mathbf	{F}	=m{\frac	{d^{2}\mathbf	{s}	}{dt^{2}}}.}	Newton's	second	law,	in	modern	form,	states	that	the	time	derivative	of	the	momentum	is	the	force:[23]: 4.1 	F	=	d	p	d	t	.	{\displaystyle	\mathbf	{F}	={\frac	{d\mathbf	{p}	}{dt}}\,.}	When	applied	to	systems	of	variable	mass,	the	equation	above	is	only	valid	only	for	a	fixed	set	of
particles.	Applying	the	derivative	as	in	F	=	m	d	v	d	t	+	v	d	m	d	t					(	i	n	c	o	r	r	e	c	t	)	{\displaystyle	\mathbf	{F}	=m{\frac	{\mathrm	{d}	\mathbf	{v}	}{\mathrm	{d}	t}}+\mathbf	{v}	{\frac	{\mathrm	{d}	m}{\mathrm	{d}	t}}\	\	\mathrm	{(incorrect)}	}	can	lead	to	incorrect	results.[24]	For	example,	the	momentum	of	a	water	jet	system	must	include
the	momentum	of	the	ejected	water:[25]	F	e	x	t	=	d	p	d	t	−	v	e	j	e	c	t	d	m	d	t	.	{\displaystyle	\mathbf	{F}	_{\mathrm	{ext}	}={\mathrm	{d}	\mathbf	{p}	\over	\mathrm	{d}	t}-\mathbf	{v}	_{\mathrm	{eject}	}{\frac	{\mathrm	{d}	m}{\mathrm	{d}	t}}.}	A	free	body	diagram	for	a	block	on	an	inclined	plane,	illustrating	the	normal	force	perpendicular	to
the	plane	(N),	the	downward	force	of	gravity	(mg),	and	a	force	f	along	the	direction	of	the	plane	that	could	be	applied,	for	example,	by	friction	or	a	string	The	forces	acting	on	a	body	add	as	vectors,	and	so	the	total	force	on	a	body	depends	upon	both	the	magnitudes	and	the	directions	of	the	individual	forces.[23]: 58 	When	the	net	force	on	a	body	is
equal	to	zero,	then	by	Newton's	second	law,	the	body	does	not	accelerate,	and	it	is	said	to	be	in	mechanical	equilibrium.	A	state	of	mechanical	equilibrium	is	stable	if,	when	the	position	of	the	body	is	changed	slightly,	the	body	remains	near	that	equilibrium.	Otherwise,	the	equilibrium	is	unstable.[15]: 121 [23]: 174 	A	common	visual	representation	of
forces	acting	in	concert	is	the	free	body	diagram,	which	schematically	portrays	a	body	of	interest	and	the	forces	applied	to	it	by	outside	influences.[26]	For	example,	a	free	body	diagram	of	a	block	sitting	upon	an	inclined	plane	can	illustrate	the	combination	of	gravitational	force,	"normal"	force,	friction,	and	string	tension.[note	4]	Newton's	second	law
is	sometimes	presented	as	a	definition	of	force,	i.e.,	a	force	is	that	which	exists	when	an	inertial	observer	sees	a	body	accelerating.	This	is	sometimes	regarded	as	a	potential	tautology	—	acceleration	implies	force,	force	implies	acceleration.	However,	Newton's	second	law	not	only	merely	defines	the	force	by	the	acceleration:	forces	exist	as	separate
from	the	acceleration	produced	by	the	force	in	a	particular	system.	The	same	force	that	is	identified	as	producing	acceleration	to	an	object	can	then	be	applied	to	any	other	object,	and	the	resulting	accelerations	(coming	from	that	same	force)	will	always	be	inversely	proportional	to	the	mass	of	the	object.	What	Newton's	Second	Law	states	is	that	all
the	effect	of	a	force	onto	a	system	can	be	reduced	to	two	pieces	of	information:	the	magnitude	of	the	force,	and	it's	direction,	and	then	goes	on	to	specify	what	the	effect	is.	Beyond	that,	an	equation	detailing	the	force	might	also	be	specified,	like	Newton's	law	of	universal	gravitation.	By	inserting	such	an	expression	for	F	{\displaystyle	\mathbf	{F}	}
into	Newton's	second	law,	an	equation	with	predictive	power	can	be	written.[note	5]	Newton's	second	law	has	also	been	regarded	as	setting	out	a	research	program	for	physics,	establishing	that	important	goals	of	the	subject	are	to	identify	the	forces	present	in	nature	and	to	catalogue	the	constituents	of	matter.[15]: 134 [28]: 12-2 	However,	forces	can
often	be	measured	directly	with	no	acceleration	being	involved,	such	as	through	weighing	scales.	By	postulating	a	physical	object	that	can	be	directly	measured	independently	from	acceleration,	Newton	made	a	objective	physical	statement	with	the	second	law	alone,	the	predictions	of	which	can	be	verified	even	if	no	force	law	is	given.	To	every	action,
there	is	always	opposed	an	equal	reaction;	or,	the	mutual	actions	of	two	bodies	upon	each	other	are	always	equal,	and	directed	to	contrary	parts.[15]: 116 	Rockets	work	by	creating	unbalanced	high	pressure	that	pushes	the	rocket	upwards	while	exhaust	gas	exits	through	an	open	nozzle.[30]	In	other	words,	if	one	body	exerts	a	force	on	a	second	body,
the	second	body	is	also	exerting	a	force	on	the	first	body,	of	equal	magnitude	in	the	opposite	direction.	Overly	brief	paraphrases	of	the	third	law,	like	"action	equals	reaction"	might	have	caused	confusion	among	generations	of	students:	the	"action"	and	"reaction"	apply	to	different	bodies.	For	example,	consider	a	book	at	rest	on	a	table.	The	Earth's
gravity	pulls	down	upon	the	book.	The	"reaction"	to	that	"action"	is	not	the	support	force	from	the	table	holding	up	the	book,	but	the	gravitational	pull	of	the	book	acting	on	the	Earth.[note	6]	Newton's	third	law	relates	to	a	more	fundamental	principle,	the	conservation	of	momentum.	The	latter	remains	true	even	in	cases	where	Newton's	statement
does	not,	for	instance	when	force	fields	as	well	as	material	bodies	carry	momentum,	and	when	momentum	is	defined	properly,	in	quantum	mechanics	as	well.[note	7]	In	Newtonian	mechanics,	if	two	bodies	have	momenta	p	1	{\displaystyle	\mathbf	{p}	_{1}}	and	p	2	{\displaystyle	\mathbf	{p}	_{2}}	respectively,	then	the	total	momentum	of	the	pair	is
p	=	p	1	+	p	2	{\displaystyle	\mathbf	{p}	=\mathbf	{p}	_{1}+\mathbf	{p}	_{2}}	,	and	the	rate	of	change	of	p	{\displaystyle	\mathbf	{p}	}	is	d	p	d	t	=	d	p	1	d	t	+	d	p	2	d	t	.	{\displaystyle	{\frac	{d\mathbf	{p}	}{dt}}={\frac	{d\mathbf	{p}	_{1}}{dt}}+{\frac	{d\mathbf	{p}	_{2}}{dt}}.}	By	Newton's	second	law,	the	first	term	is	the	total	force	upon
the	first	body,	and	the	second	term	is	the	total	force	upon	the	second	body.	If	the	two	bodies	are	isolated	from	outside	influences,	the	only	force	upon	the	first	body	can	be	that	from	the	second,	and	vice	versa.	By	Newton's	third	law,	these	forces	have	equal	magnitude	but	opposite	direction,	so	they	cancel	when	added,	and	p	{\displaystyle	\mathbf	{p}
}	is	constant.	Alternatively,	if	p	{\displaystyle	\mathbf	{p}	}	is	known	to	be	constant,	it	follows	that	the	forces	have	equal	magnitude	and	opposite	direction.	Various	sources	have	proposed	elevating	other	ideas	used	in	classical	mechanics	to	the	status	of	Newton's	laws.	For	example,	in	Newtonian	mechanics,	the	total	mass	of	a	body	made	by	bringing
together	two	smaller	bodies	is	the	sum	of	their	individual	masses.	Frank	Wilczek	has	suggested	calling	attention	to	this	assumption	by	designating	it	"Newton's	Zeroth	Law".[37]	Another	candidate	for	a	"zeroth	law"	is	the	fact	that	at	any	instant,	a	body	reacts	to	the	forces	applied	to	it	at	that	instant.[38]	Likewise,	the	idea	that	forces	add	like	vectors
(or	in	other	words	obey	the	superposition	principle),	and	the	idea	that	forces	change	the	energy	of	a	body,	have	both	been	described	as	a	"fourth	law".[note	8]	Moreover,	some	texts	organize	the	basic	ideas	of	Newtonian	mechanics	into	different	postulates,	other	than	the	three	laws	as	commonly	phrased,	with	the	goal	of	being	more	clear	about	what	is
empirically	observed	and	what	is	true	by	definition.[19]: 9 [27]	The	study	of	the	behavior	of	massive	bodies	using	Newton's	laws	is	known	as	Newtonian	mechanics.	Some	example	problems	in	Newtonian	mechanics	are	particularly	noteworthy	for	conceptual	or	historical	reasons.	Main	articles:	Free	fall	and	Projectile	motion	A	bouncing	ball
photographed	at	25	frames	per	second	using	a	stroboscopic	flash.	In	between	bounces,	the	ball's	height	as	a	function	of	time	is	close	to	being	a	parabola,	deviating	from	a	parabolic	arc	because	of	air	resistance,	spin,	and	deformation	into	a	non-spherical	shape	upon	impact.	If	a	body	falls	from	rest	near	the	surface	of	the	Earth,	then	in	the	absence	of
air	resistance,	it	will	accelerate	at	a	constant	rate.	This	is	known	as	free	fall.	The	speed	attained	during	free	fall	is	proportional	to	the	elapsed	time,	and	the	distance	traveled	is	proportional	to	the	square	of	the	elapsed	time.[43]	Importantly,	the	acceleration	is	the	same	for	all	bodies,	independently	of	their	mass.	This	follows	from	combining	Newton's
second	law	of	motion	with	his	law	of	universal	gravitation.	The	latter	states	that	the	magnitude	of	the	gravitational	force	from	the	Earth	upon	the	body	is	F	=	G	M	m	r	2	,	{\displaystyle	F={\frac	{GMm}{r^{2}}},}	where	m	{\displaystyle	m}	is	the	mass	of	the	falling	body,	M	{\displaystyle	M}	is	the	mass	of	the	Earth,	G	{\displaystyle	G}	is	Newton's
constant,	and	r	{\displaystyle	r}	is	the	distance	from	the	center	of	the	Earth	to	the	body's	location,	which	is	very	nearly	the	radius	of	the	Earth.	Setting	this	equal	to	m	a	{\displaystyle	ma}	,	the	body's	mass	m	{\displaystyle	m}	cancels	from	both	sides	of	the	equation,	leaving	an	acceleration	that	depends	upon	G	{\displaystyle	G}	,	M	{\displaystyle	M}	,
and	r	{\displaystyle	r}	,	and	r	{\displaystyle	r}	can	be	taken	to	be	constant.	This	particular	value	of	acceleration	is	typically	denoted	g	{\displaystyle	g}	:	g	=	G	M	r	2	≈	9.8			m	/	s	2	.	{\displaystyle	g={\frac	{GM}{r^{2}}}\approx	\mathrm	{9.8~m/s^{2}}	.}	If	the	body	is	not	released	from	rest	but	instead	launched	upwards	and/or	horizontally	with
nonzero	velocity,	then	free	fall	becomes	projectile	motion.[44]	When	air	resistance	can	be	neglected,	projectiles	follow	parabola-shaped	trajectories,	because	gravity	affects	the	body's	vertical	motion	and	not	its	horizontal.	At	the	peak	of	the	projectile's	trajectory,	its	vertical	velocity	is	zero,	but	its	acceleration	is	g	{\displaystyle	g}	downwards,	as	it	is
at	all	times.	Setting	the	wrong	vector	equal	to	zero	is	a	common	confusion	among	physics	students.[45]	Main	article:	Circular	motion	Two	objects	in	uniform	circular	motion,	orbiting	around	the	barycenter	(center	of	mass	of	both	objects)	When	a	body	is	in	uniform	circular	motion,	the	force	on	it	changes	the	direction	of	its	motion	but	not	its	speed.	For
a	body	moving	in	a	circle	of	radius	r	{\displaystyle	r}	at	a	constant	speed	v	{\displaystyle	v}	,	its	acceleration	has	a	magnitude	a	=	v	2	r	{\displaystyle	a={\frac	{v^{2}}{r}}}	and	is	directed	toward	the	center	of	the	circle.[note	9]	The	force	required	to	sustain	this	acceleration,	called	the	centripetal	force,	is	therefore	also	directed	toward	the	center	of
the	circle	and	has	magnitude	m	v	2	/	r	{\displaystyle	mv^{2}/r}	.	Many	orbits,	such	as	that	of	the	Moon	around	the	Earth,	can	be	approximated	by	uniform	circular	motion.	In	such	cases,	the	centripetal	force	is	gravity,	and	by	Newton's	law	of	universal	gravitation	has	magnitude	G	M	m	/	r	2	{\displaystyle	GMm/r^{2}}	,	where	M	{\displaystyle	M}	is
the	mass	of	the	larger	body	being	orbited.	Therefore,	the	mass	of	a	body	can	be	calculated	from	observations	of	another	body	orbiting	around	it.[47]: 130 	Newton's	cannonball	is	a	thought	experiment	that	interpolates	between	projectile	motion	and	uniform	circular	motion.	A	cannonball	that	is	lobbed	weakly	off	the	edge	of	a	tall	cliff	will	hit	the	ground
in	the	same	amount	of	time	as	if	it	were	dropped	from	rest,	because	the	force	of	gravity	only	affects	the	cannonball's	momentum	in	the	downward	direction,	and	its	effect	is	not	diminished	by	horizontal	movement.	If	the	cannonball	is	launched	with	a	greater	initial	horizontal	velocity,	then	it	will	travel	farther	before	it	hits	the	ground,	but	it	will	still	hit
the	ground	in	the	same	amount	of	time.	However,	if	the	cannonball	is	launched	with	an	even	larger	initial	velocity,	then	the	curvature	of	the	Earth	becomes	significant:	the	ground	itself	will	curve	away	from	the	falling	cannonball.	A	very	fast	cannonball	will	fall	away	from	the	inertial	straight-line	trajectory	at	the	same	rate	that	the	Earth	curves	away
beneath	it;	in	other	words,	it	will	be	in	orbit	(imagining	that	it	is	not	slowed	by	air	resistance	or	obstacles).[48]	Main	article:	Harmonic	oscillator	An	undamped	spring–mass	system	undergoes	simple	harmonic	motion.	Consider	a	body	of	mass	m	{\displaystyle	m}	able	to	move	along	the	x	{\displaystyle	x}	axis,	and	suppose	an	equilibrium	point	exists	at
the	position	x	=	0	{\displaystyle	x=0}	.	That	is,	at	x	=	0	{\displaystyle	x=0}	,	the	net	force	upon	the	body	is	the	zero	vector,	and	by	Newton's	second	law,	the	body	will	not	accelerate.	If	the	force	upon	the	body	is	proportional	to	the	displacement	from	the	equilibrium	point,	and	directed	to	the	equilibrium	point,	then	the	body	will	perform	simple
harmonic	motion.	Writing	the	force	as	F	=	−	k	x	{\displaystyle	F=-kx}	,	Newton's	second	law	becomes	m	d	2	x	d	t	2	=	−	k	x	.	{\displaystyle	m{\frac	{d^{2}x}{dt^{2}}}=-kx\,.}	This	differential	equation	has	the	solution	x	(	t	)	=	A	cos	⁡	ω	t	+	B	sin	⁡	ω	t	{\displaystyle	x(t)=A\cos	\omega	t+B\sin	\omega	t\,}	where	the	frequency	ω	{\displaystyle	\omega	}
is	equal	to	k	/	m	{\displaystyle	{\sqrt	{k/m}}}	,	and	the	constants	A	{\displaystyle	A}	and	B	{\displaystyle	B}	can	be	calculated	knowing,	for	example,	the	position	and	velocity	the	body	has	at	a	given	time,	like	t	=	0	{\displaystyle	t=0}	.	One	reason	that	the	harmonic	oscillator	is	a	conceptually	important	example	is	that	it	is	good	approximation	for
many	systems	near	a	stable	mechanical	equilibrium.[note	10]	For	example,	a	pendulum	has	a	stable	equilibrium	in	the	vertical	position:	if	motionless	there,	it	will	remain	there,	and	if	pushed	slightly,	it	will	swing	back	and	forth.	Neglecting	air	resistance	and	friction	in	the	pivot,	the	force	upon	the	pendulum	is	gravity,	and	Newton's	second	law
becomes	d	2	θ	d	t	2	=	−	g	L	sin	⁡	θ	,	{\displaystyle	{\frac	{d^{2}\theta	}{dt^{2}}}=-{\frac	{g}{L}}\sin	\theta	,}	where	L	{\displaystyle	L}	is	the	length	of	the	pendulum	and	θ	{\displaystyle	\theta	}	is	its	angle	from	the	vertical.	When	the	angle	θ	{\displaystyle	\theta	}	is	small,	the	sine	of	θ	{\displaystyle	\theta	}	is	nearly	equal	to	θ	{\displaystyle
\theta	}	(see	small-angle	approximation),	and	so	this	expression	simplifies	to	the	equation	for	a	simple	harmonic	oscillator	with	frequency	ω	=	g	/	L	{\displaystyle	\omega	={\sqrt	{g/L}}}	.	A	harmonic	oscillator	can	be	damped,	often	by	friction	or	viscous	drag,	in	which	case	energy	bleeds	out	of	the	oscillator	and	the	amplitude	of	the	oscillations
decreases	over	time.	Also,	a	harmonic	oscillator	can	be	driven	by	an	applied	force,	which	can	lead	to	the	phenomenon	of	resonance.[50]	Main	article:	Variable-mass	system	Rockets,	like	the	Space	Shuttle	Atlantis,	expel	mass	during	operation.	This	means	that	the	mass	being	pushed,	the	rocket	and	its	remaining	onboard	fuel	supply,	is	constantly
changing.	Newtonian	physics	treats	matter	as	being	neither	created	nor	destroyed,	though	it	may	be	rearranged.	It	can	be	the	case	that	an	object	of	interest	gains	or	loses	mass	because	matter	is	added	to	or	removed	from	it.	In	such	a	situation,	Newton's	laws	can	be	applied	to	the	individual	pieces	of	matter,	keeping	track	of	which	pieces	belong	to
the	object	of	interest	over	time.	For	instance,	if	a	rocket	of	mass	M	(	t	)	{\displaystyle	M(t)}	,	moving	at	velocity	v	(	t	)	{\displaystyle	\mathbf	{v}	(t)}	,	ejects	matter	at	a	velocity	u	{\displaystyle	\mathbf	{u}	}	relative	to	the	rocket,	then[24]	F	=	M	d	v	d	t	−	u	d	M	d	t	{\displaystyle	\mathbf	{F}	=M{\frac	{d\mathbf	{v}	}{dt}}-\mathbf	{u}	{\frac	{dM}
{dt}}\,}	where	F	{\displaystyle	\mathbf	{F}	}	is	the	net	external	force	(e.g.,	a	planet's	gravitational	pull).[23]: 139 	A	boat	equipped	with	a	fan	and	a	sail	The	fan	and	sail	example	is	a	situation	studied	in	discussions	of	Newton's	third	law.[51]	In	the	situation,	a	fan	is	attached	to	a	cart	or	a	sailboat	and	blows	on	its	sail.	From	the	third	law,	one	would
reason	that	the	force	of	the	air	pushing	in	one	direction	would	cancel	out	the	force	done	by	the	fan	on	the	sail,	leaving	the	entire	apparatus	stationary.	However,	because	the	system	is	not	entirely	enclosed,	there	are	conditions	in	which	the	vessel	will	move;	for	example,	if	the	sail	is	built	in	a	manner	that	redirects	the	majority	of	the	airflow	back
towards	the	fan,	the	net	force	will	result	in	the	vessel	moving	forward.[34][52]	The	concept	of	energy	was	developed	after	Newton's	time,	but	it	has	become	an	inseparable	part	of	what	is	considered	"Newtonian"	physics.	Energy	can	broadly	be	classified	into	kinetic,	due	to	a	body's	motion,	and	potential,	due	to	a	body's	position	relative	to	others.
Thermal	energy,	the	energy	carried	by	heat	flow,	is	a	type	of	kinetic	energy	not	associated	with	the	macroscopic	motion	of	objects	but	instead	with	the	movements	of	the	atoms	and	molecules	of	which	they	are	made.	According	to	the	work-energy	theorem,	when	a	force	acts	upon	a	body	while	that	body	moves	along	the	line	of	the	force,	the	force	does
work	upon	the	body,	and	the	amount	of	work	done	is	equal	to	the	change	in	the	body's	kinetic	energy.[note	11]	In	many	cases	of	interest,	the	net	work	done	by	a	force	when	a	body	moves	in	a	closed	loop	—	starting	at	a	point,	moving	along	some	trajectory,	and	returning	to	the	initial	point	—	is	zero.	If	this	is	the	case,	then	the	force	can	be	written	in
terms	of	the	gradient	of	a	function	called	a	scalar	potential:[46]: 303 	F	=	−	∇	U	.	{\displaystyle	\mathbf	{F}	=-\mathbf	{abla	}	U\,.}	This	is	true	for	many	forces	including	that	of	gravity,	but	not	for	friction;	indeed,	almost	any	problem	in	a	mechanics	textbook	that	does	not	involve	friction	can	be	expressed	in	this	way.[49]: 19 	The	fact	that	the	force	can
be	written	in	this	way	can	be	understood	from	the	conservation	of	energy.	Without	friction	to	dissipate	a	body's	energy	into	heat,	the	body's	energy	will	trade	between	potential	and	(non-thermal)	kinetic	forms	while	the	total	amount	remains	constant.	Any	gain	of	kinetic	energy,	which	occurs	when	the	net	force	on	the	body	accelerates	it	to	a	higher
speed,	must	be	accompanied	by	a	loss	of	potential	energy.	So,	the	net	force	upon	the	body	is	determined	by	the	manner	in	which	the	potential	energy	decreases.	Main	article:	Rigid-body	motion	A	rigid	body	is	an	object	whose	size	is	too	large	to	neglect	and	which	maintains	the	same	shape	over	time.	In	Newtonian	mechanics,	the	motion	of	a	rigid	body
is	often	understood	by	separating	it	into	movement	of	the	body's	center	of	mass	and	movement	around	the	center	of	mass.	Main	article:	Center	of	mass	The	total	center	of	mass	of	the	forks,	cork,	and	toothpick	is	on	top	of	the	pen's	tip.	Significant	aspects	of	the	motion	of	an	extended	body	can	be	understood	by	imagining	the	mass	of	that	body
concentrated	to	a	single	point,	known	as	the	center	of	mass.	The	location	of	a	body's	center	of	mass	depends	upon	how	that	body's	material	is	distributed.	For	a	collection	of	pointlike	objects	with	masses	m	1	,	…	,	m	N	{\displaystyle	m_{1},\ldots	,m_{N}}	at	positions	r	1	,	…	,	r	N	{\displaystyle	\mathbf	{r}	_{1},\ldots	,\mathbf	{r}	_{N}}	,	the	center	of
mass	is	located	at	R	=	∑	i	=	1	N	m	i	r	i	M	,	{\displaystyle	\mathbf	{R}	=\sum	_{i=1}^{N}{\frac	{m_{i}\mathbf	{r}	_{i}}{M}},}	where	M	{\displaystyle	M}	is	the	total	mass	of	the	collection.	In	the	absence	of	a	net	external	force,	the	center	of	mass	moves	at	a	constant	speed	in	a	straight	line.	This	applies,	for	example,	to	a	collision	between	two
bodies.[55]	If	the	total	external	force	is	not	zero,	then	the	center	of	mass	changes	velocity	as	though	it	were	a	point	body	of	mass	M	{\displaystyle	M}	.	This	follows	from	the	fact	that	the	internal	forces	within	the	collection,	the	forces	that	the	objects	exert	upon	each	other,	occur	in	balanced	pairs	by	Newton's	third	law.	In	a	system	of	two	bodies	with
one	much	more	massive	than	the	other,	the	center	of	mass	will	approximately	coincide	with	the	location	of	the	more	massive	body.[19]: 22–24 	When	Newton's	laws	are	applied	to	rotating	extended	bodies,	they	lead	to	new	quantities	that	are	analogous	to	those	invoked	in	the	original	laws.	The	analogue	of	mass	is	the	moment	of	inertia,	the	counterpart
of	momentum	is	angular	momentum,	and	the	counterpart	of	force	is	torque.	Angular	momentum	is	calculated	with	respect	to	a	reference	point.[56]	If	the	displacement	vector	from	a	reference	point	to	a	body	is	r	{\displaystyle	\mathbf	{r}	}	and	the	body	has	momentum	p	{\displaystyle	\mathbf	{p}	}	,	then	the	body's	angular	momentum	with	respect
to	that	point	is,	using	the	vector	cross	product,	L	=	r	×	p	.	{\displaystyle	\mathbf	{L}	=\mathbf	{r}	\times	\mathbf	{p}	.}	Taking	the	time	derivative	of	the	angular	momentum	gives	d	L	d	t	=	(	d	r	d	t	)	×	p	+	r	×	d	p	d	t	=	v	×	m	v	+	r	×	F	.	{\displaystyle	{\frac	{d\mathbf	{L}	}{dt}}=\left({\frac	{d\mathbf	{r}	}{dt}}\right)\times	\mathbf	{p}	+\mathbf
{r}	\times	{\frac	{d\mathbf	{p}	}{dt}}=\mathbf	{v}	\times	m\mathbf	{v}	+\mathbf	{r}	\times	\mathbf	{F}	.}	The	first	term	vanishes	because	v	{\displaystyle	\mathbf	{v}	}	and	m	v	{\displaystyle	m\mathbf	{v}	}	point	in	the	same	direction.	The	remaining	term	is	the	torque,	τ	=	r	×	F	.	{\displaystyle	\mathbf	{\tau	}	=\mathbf	{r}	\times	\mathbf	{F}	.}
When	the	torque	is	zero,	the	angular	momentum	is	constant,	just	as	when	the	force	is	zero,	the	momentum	is	constant.[19]: 14–15 	The	torque	can	vanish	even	when	the	force	is	non-zero,	if	the	body	is	located	at	the	reference	point	(	r	=	0	{\displaystyle	\mathbf	{r}	=0}	)	or	if	the	force	F	{\displaystyle	\mathbf	{F}	}	and	the	displacement	vector	r
{\displaystyle	\mathbf	{r}	}	are	directed	along	the	same	line.	The	angular	momentum	of	a	collection	of	point	masses,	and	thus	of	an	extended	body,	is	found	by	adding	the	contributions	from	each	of	the	points.	This	provides	a	means	to	characterize	a	body's	rotation	about	an	axis,	by	adding	up	the	angular	momenta	of	its	individual	pieces.	The	result
depends	on	the	chosen	axis,	the	shape	of	the	body,	and	the	rate	of	rotation.[19]: 28 	Main	articles:	Two-body	problem	and	Three-body	problem	Animation	of	three	points	or	bodies	attracting	to	each	other	Newton's	law	of	universal	gravitation	states	that	any	body	attracts	any	other	body	along	the	straight	line	connecting	them.	The	size	of	the	attracting
force	is	proportional	to	the	product	of	their	masses,	and	inversely	proportional	to	the	square	of	the	distance	between	them.	Finding	the	shape	of	the	orbits	that	an	inverse-square	force	law	will	produce	is	known	as	the	Kepler	problem.	The	Kepler	problem	can	be	solved	in	multiple	ways,	including	by	demonstrating	that	the	Laplace–Runge–Lenz	vector
is	constant,[57]	or	by	applying	a	duality	transformation	to	a	2-dimensional	harmonic	oscillator.[58]	However	it	is	solved,	the	result	is	that	orbits	will	be	conic	sections,	that	is,	ellipses	(including	circles),	parabolas,	or	hyperbolas.	The	eccentricity	of	the	orbit,	and	thus	the	type	of	conic	section,	is	determined	by	the	energy	and	the	angular	momentum	of
the	orbiting	body.	Planets	do	not	have	sufficient	energy	to	escape	the	Sun,	and	so	their	orbits	are	ellipses,	to	a	good	approximation;	because	the	planets	pull	on	one	another,	actual	orbits	are	not	exactly	conic	sections.	If	a	third	mass	is	added,	the	Kepler	problem	becomes	the	three-body	problem,	which	in	general	has	no	exact	solution	in	closed	form.
That	is,	there	is	no	way	to	start	from	the	differential	equations	implied	by	Newton's	laws	and,	after	a	finite	sequence	of	standard	mathematical	operations,	obtain	equations	that	express	the	three	bodies'	motions	over	time.[59][60]	Numerical	methods	can	be	applied	to	obtain	useful,	albeit	approximate,	results	for	the	three-body	problem.[61]	The
positions	and	velocities	of	the	bodies	can	be	stored	in	variables	within	a	computer's	memory;	Newton's	laws	are	used	to	calculate	how	the	velocities	will	change	over	a	short	interval	of	time,	and	knowing	the	velocities,	the	changes	of	position	over	that	time	interval	can	be	computed.	This	process	is	looped	to	calculate,	approximately,	the	bodies'
trajectories.	Generally	speaking,	the	shorter	the	time	interval,	the	more	accurate	the	approximation.[62]	Main	article:	Chaos	theory	Three	double	pendulums,	initialized	with	almost	exactly	the	same	initial	conditions,	diverge	over	time.	Newton's	laws	of	motion	allow	the	possibility	of	chaos.[63][64]	That	is,	qualitatively	speaking,	physical	systems
obeying	Newton's	laws	can	exhibit	sensitive	dependence	upon	their	initial	conditions:	a	slight	change	of	the	position	or	velocity	of	one	part	of	a	system	can	lead	to	the	whole	system	behaving	in	a	radically	different	way	within	a	short	time.	Noteworthy	examples	include	the	three-body	problem,	the	double	pendulum,	dynamical	billiards,	and	the	Fermi–
Pasta–Ulam–Tsingou	problem.	Newton's	laws	can	be	applied	to	fluids	by	considering	a	fluid	as	composed	of	infinitesimal	pieces,	each	exerting	forces	upon	neighboring	pieces.	The	Euler	momentum	equation	is	an	expression	of	Newton's	second	law	adapted	to	fluid	dynamics.[65][66]	A	fluid	is	described	by	a	velocity	field,	i.e.,	a	function	v	(	x	,	t	)
{\displaystyle	\mathbf	{v}	(\mathbf	{x}	,t)}	that	assigns	a	velocity	vector	to	each	point	in	space	and	time.	A	small	object	being	carried	along	by	the	fluid	flow	can	change	velocity	for	two	reasons:	first,	because	the	velocity	field	at	its	position	is	changing	over	time,	and	second,	because	it	moves	to	a	new	location	where	the	velocity	field	has	a	different
value.	Consequently,	when	Newton's	second	law	is	applied	to	an	infinitesimal	portion	of	fluid,	the	acceleration	a	{\displaystyle	\mathbf	{a}	}	has	two	terms,	a	combination	known	as	a	total	or	material	derivative.	The	mass	of	an	infinitesimal	portion	depends	upon	the	fluid	density,	and	there	is	a	net	force	upon	it	if	the	fluid	pressure	varies	from	one	side
of	it	to	another.	Accordingly,	a	=	F	/	m	{\displaystyle	\mathbf	{a}	=\mathbf	{F}	/m}	becomes	∂	v	∂	t	+	(	∇	⋅	v	)	v	=	−	1	ρ	∇	P	+	f	,	{\displaystyle	{\frac	{\partial	v}{\partial	t}}+(\mathbf	{abla	}	\cdot	\mathbf	{v}	)\mathbf	{v}	=-{\frac	{1}{\rho	}}\mathbf	{abla	}	P+\mathbf	{f}	,}	where	ρ	{\displaystyle	\rho	}	is	the	density,	P	{\displaystyle	P}	is	the
pressure,	and	f	{\displaystyle	\mathbf	{f}	}	stands	for	an	external	influence	like	a	gravitational	pull.	Incorporating	the	effect	of	viscosity	turns	the	Euler	equation	into	a	Navier–Stokes	equation:	∂	v	∂	t	+	(	∇	⋅	v	)	v	=	−	1	ρ	∇	P	+	ν	∇	2	v	+	f	,	{\displaystyle	{\frac	{\partial	v}{\partial	t}}+(\mathbf	{abla	}	\cdot	\mathbf	{v}	)\mathbf	{v}	=-{\frac	{1}{\rho
}}\mathbf	{abla	}	P+u	abla	^{2}\mathbf	{v}	+\mathbf	{f}	,}	where	ν	{\displaystyle	u	}	is	the	kinematic	viscosity.[65]	It	is	mathematically	possible	for	a	collection	of	point	masses,	moving	in	accord	with	Newton's	laws,	to	launch	some	of	themselves	away	so	forcefully	that	they	fly	off	to	infinity	in	a	finite	time.[67]	This	unphysical	behavior,	known	as	a



"noncollision	singularity",[60]	depends	upon	the	masses	being	pointlike	and	able	to	approach	one	another	arbitrarily	closely,	as	well	as	the	lack	of	a	relativistic	speed	limit	in	Newtonian	physics.[68]	It	is	not	yet	known	whether	or	not	the	Euler	and	Navier–Stokes	equations	exhibit	the	analogous	behavior	of	initially	smooth	solutions	"blowing	up"	in
finite	time.	The	question	of	existence	and	smoothness	of	Navier–Stokes	solutions	is	one	of	the	Millennium	Prize	Problems.[69]	Classical	mechanics	can	be	mathematically	formulated	in	multiple	different	ways,	other	than	the	"Newtonian"	description	(which	itself,	of	course,	incorporates	contributions	from	others	both	before	and	after	Newton).	The
physical	content	of	these	different	formulations	is	the	same	as	the	Newtonian,	but	they	provide	different	insights	and	facilitate	different	types	of	calculations.	For	example,	Lagrangian	mechanics	helps	make	apparent	the	connection	between	symmetries	and	conservation	laws,	and	it	is	useful	when	calculating	the	motion	of	constrained	bodies,	like	a
mass	restricted	to	move	along	a	curving	track	or	on	the	surface	of	a	sphere.[19]: 48 	Hamiltonian	mechanics	is	convenient	for	statistical	physics,[70][71]: 57 	leads	to	further	insight	about	symmetry,[19]: 251 	and	can	be	developed	into	sophisticated	techniques	for	perturbation	theory.[19]: 284 	Due	to	the	breadth	of	these	topics,	the	discussion	here	will
be	confined	to	concise	treatments	of	how	they	reformulate	Newton's	laws	of	motion.	Lagrangian	mechanics	differs	from	the	Newtonian	formulation	by	considering	entire	trajectories	at	once	rather	than	predicting	a	body's	motion	at	a	single	instant.[19]: 109 	It	is	traditional	in	Lagrangian	mechanics	to	denote	position	with	q	{\displaystyle	q}	and
velocity	with	q	˙	{\displaystyle	{\dot	{q}}}	.	The	simplest	example	is	a	massive	point	particle,	the	Lagrangian	for	which	can	be	written	as	the	difference	between	its	kinetic	and	potential	energies:	L	(	q	,	q	˙	)	=	T	−	V	,	{\displaystyle	L(q,{\dot	{q}})=T-V,}	where	the	kinetic	energy	is	T	=	1	2	m	q	˙	2	{\displaystyle	T={\frac	{1}{2}}m{\dot	{q}}^{2}}
and	the	potential	energy	is	some	function	of	the	position,	V	(	q	)	{\displaystyle	V(q)}	.	The	physical	path	that	the	particle	will	take	between	an	initial	point	q	i	{\displaystyle	q_{i}}	and	a	final	point	q	f	{\displaystyle	q_{f}}	is	the	path	for	which	the	integral	of	the	Lagrangian	is	"stationary".	That	is,	the	physical	path	has	the	property	that	small
perturbations	of	it	will,	to	a	first	approximation,	not	change	the	integral	of	the	Lagrangian.	Calculus	of	variations	provides	the	mathematical	tools	for	finding	this	path.[46]: 485 	Applying	the	calculus	of	variations	to	the	task	of	finding	the	path	yields	the	Euler–Lagrange	equation	for	the	particle,	d	d	t	(	∂	L	∂	q	˙	)	=	∂	L	∂	q	.	{\displaystyle	{\frac	{d}
{dt}}\left({\frac	{\partial	L}{\partial	{\dot	{q}}}}\right)={\frac	{\partial	L}{\partial	q}}.}	Evaluating	the	partial	derivatives	of	the	Lagrangian	gives	d	d	t	(	m	q	˙	)	=	−	d	V	d	q	,	{\displaystyle	{\frac	{d}{dt}}(m{\dot	{q}})=-{\frac	{dV}{dq}},}	which	is	a	restatement	of	Newton's	second	law.	The	left-hand	side	is	the	time	derivative	of	the	momentum,
and	the	right-hand	side	is	the	force,	represented	in	terms	of	the	potential	energy.[9]: 737 	Landau	and	Lifshitz	argue	that	the	Lagrangian	formulation	makes	the	conceptual	content	of	classical	mechanics	more	clear	than	starting	with	Newton's	laws.[29]	Lagrangian	mechanics	provides	a	convenient	framework	in	which	to	prove	Noether's	theorem,
which	relates	symmetries	and	conservation	laws.[72]	The	conservation	of	momentum	can	be	derived	by	applying	Noether's	theorem	to	a	Lagrangian	for	a	multi-particle	system,	and	so,	Newton's	third	law	is	a	theorem	rather	than	an	assumption.[19]: 124 	Emmy	Noether,	whose	1915	proof	of	a	celebrated	theorem	that	relates	symmetries	and
conservation	laws	was	a	key	development	in	modern	physics	and	can	be	conveniently	stated	in	the	language	of	Lagrangian	or	Hamiltonian	mechanics	In	Hamiltonian	mechanics,	the	dynamics	of	a	system	are	represented	by	a	function	called	the	Hamiltonian,	which	in	many	cases	of	interest	is	equal	to	the	total	energy	of	the	system.[9]: 742 	The
Hamiltonian	is	a	function	of	the	positions	and	the	momenta	of	all	the	bodies	making	up	the	system,	and	it	may	also	depend	explicitly	upon	time.	The	time	derivatives	of	the	position	and	momentum	variables	are	given	by	partial	derivatives	of	the	Hamiltonian,	via	Hamilton's	equations.[19]: 203 	The	simplest	example	is	a	point	mass	m	{\displaystyle	m}
constrained	to	move	in	a	straight	line,	under	the	effect	of	a	potential.	Writing	q	{\displaystyle	q}	for	the	position	coordinate	and	p	{\displaystyle	p}	for	the	body's	momentum,	the	Hamiltonian	is	H	(	p	,	q	)	=	p	2	2	m	+	V	(	q	)	.	{\displaystyle	{\mathcal	{H}}(p,q)={\frac	{p^{2}}{2m}}+V(q).}	In	this	example,	Hamilton's	equations	are	d	q	d	t	=	∂	H	∂	p
{\displaystyle	{\frac	{dq}{dt}}={\frac	{\partial	{\mathcal	{H}}}{\partial	p}}}	and	d	p	d	t	=	−	∂	H	∂	q	.	{\displaystyle	{\frac	{dp}{dt}}=-{\frac	{\partial	{\mathcal	{H}}}{\partial	q}}.}	Evaluating	these	partial	derivatives,	the	former	equation	becomes	d	q	d	t	=	p	m	,	{\displaystyle	{\frac	{dq}{dt}}={\frac	{p}{m}},}	which	reproduces	the	familiar
statement	that	a	body's	momentum	is	the	product	of	its	mass	and	velocity.	The	time	derivative	of	the	momentum	is	d	p	d	t	=	−	d	V	d	q	,	{\displaystyle	{\frac	{dp}{dt}}=-{\frac	{dV}{dq}},}	which,	upon	identifying	the	negative	derivative	of	the	potential	with	the	force,	is	just	Newton's	second	law	once	again.[63][9]: 742 	As	in	the	Lagrangian
formulation,	in	Hamiltonian	mechanics	the	conservation	of	momentum	can	be	derived	using	Noether's	theorem,	making	Newton's	third	law	an	idea	that	is	deduced	rather	than	assumed.[19]: 251 	Among	the	proposals	to	reform	the	standard	introductory-physics	curriculum	is	one	that	teaches	the	concept	of	energy	before	that	of	force,	essentially
"introductory	Hamiltonian	mechanics".[73][74]	The	Hamilton–Jacobi	equation	provides	yet	another	formulation	of	classical	mechanics,	one	which	makes	it	mathematically	analogous	to	wave	optics.[19]: 284 [75]	This	formulation	also	uses	Hamiltonian	functions,	but	in	a	different	way	than	the	formulation	described	above.	The	paths	taken	by	bodies	or
collections	of	bodies	are	deduced	from	a	function	S	(	q	1	,	q	2	,	…	,	t	)	{\displaystyle	S(\mathbf	{q}	_{1},\mathbf	{q}	_{2},\ldots	,t)}	of	positions	q	i	{\displaystyle	\mathbf	{q}	_{i}}	and	time	t	{\displaystyle	t}	.	The	Hamiltonian	is	incorporated	into	the	Hamilton–Jacobi	equation,	a	differential	equation	for	S	{\displaystyle	S}	.	Bodies	move	over	time	in
such	a	way	that	their	trajectories	are	perpendicular	to	the	surfaces	of	constant	S	{\displaystyle	S}	,	analogously	to	how	a	light	ray	propagates	in	the	direction	perpendicular	to	its	wavefront.	This	is	simplest	to	express	for	the	case	of	a	single	point	mass,	in	which	S	{\displaystyle	S}	is	a	function	S	(	q	,	t	)	{\displaystyle	S(\mathbf	{q}	,t)}	,	and	the	point
mass	moves	in	the	direction	along	which	S	{\displaystyle	S}	changes	most	steeply.	In	other	words,	the	momentum	of	the	point	mass	is	the	gradient	of	S	{\displaystyle	S}	:	v	=	1	m	∇	S	.	{\displaystyle	\mathbf	{v}	={\frac	{1}{m}}\mathbf	{abla	}	S.}	The	Hamilton–Jacobi	equation	for	a	point	mass	is	−	∂	S	∂	t	=	H	(	q	,	∇	S	,	t	)	.	{\displaystyle	-{\frac
{\partial	S}{\partial	t}}=H\left(\mathbf	{q}	,\mathbf	{abla	}	S,t\right).}	The	relation	to	Newton's	laws	can	be	seen	by	considering	a	point	mass	moving	in	a	time-independent	potential	V	(	q	)	{\displaystyle	V(\mathbf	{q}	)}	,	in	which	case	the	Hamilton–Jacobi	equation	becomes	−	∂	S	∂	t	=	1	2	m	(	∇	S	)	2	+	V	(	q	)	.	{\displaystyle	-{\frac	{\partial	S}
{\partial	t}}={\frac	{1}{2m}}\left(\mathbf	{abla	}	S\right)^{2}+V(\mathbf	{q}	).}	Taking	the	gradient	of	both	sides,	this	becomes	−	∇	∂	S	∂	t	=	1	2	m	∇	(	∇	S	)	2	+	∇	V	.	{\displaystyle	-\mathbf	{abla	}	{\frac	{\partial	S}{\partial	t}}={\frac	{1}{2m}}\mathbf	{abla	}	\left(\mathbf	{abla	}	S\right)^{2}+\mathbf	{abla	}	V.}	Interchanging	the	order	of
the	partial	derivatives	on	the	left-hand	side,	and	using	the	power	and	chain	rules	on	the	first	term	on	the	right-hand	side,	−	∂	∂	t	∇	S	=	1	m	(	∇	S	⋅	∇	)	∇	S	+	∇	V	.	{\displaystyle	-{\frac	{\partial	}{\partial	t}}\mathbf	{abla	}	S={\frac	{1}{m}}\left(\mathbf	{abla	}	S\cdot	\mathbf	{abla	}	\right)\mathbf	{abla	}	S+\mathbf	{abla	}	V.}	Gathering	together
the	terms	that	depend	upon	the	gradient	of	S	{\displaystyle	S}	,	[	∂	∂	t	+	1	m	(	∇	S	⋅	∇	)	]	∇	S	=	−	∇	V	.	{\displaystyle	\left[{\frac	{\partial	}{\partial	t}}+{\frac	{1}{m}}\left(\mathbf	{abla	}	S\cdot	\mathbf	{abla	}	\right)\right]\mathbf	{abla	}	S=-\mathbf	{abla	}	V.}	This	is	another	re-expression	of	Newton's	second	law.[76]	The	expression	in	brackets
is	a	total	or	material	derivative	as	mentioned	above,[77]	in	which	the	first	term	indicates	how	the	function	being	differentiated	changes	over	time	at	a	fixed	location,	and	the	second	term	captures	how	a	moving	particle	will	see	different	values	of	that	function	as	it	travels	from	place	to	place:	[	∂	∂	t	+	1	m	(	∇	S	⋅	∇	)	]	=	[	∂	∂	t	+	v	⋅	∇	]	=	d	d	t	.
{\displaystyle	\left[{\frac	{\partial	}{\partial	t}}+{\frac	{1}{m}}\left(\mathbf	{abla	}	S\cdot	\mathbf	{abla	}	\right)\right]=\left[{\frac	{\partial	}{\partial	t}}+\mathbf	{v}	\cdot	\mathbf	{abla	}	\right]={\frac	{d}{dt}}.}	A	simulation	of	a	larger,	but	still	microscopic,	particle	(in	yellow)	surrounded	by	a	gas	of	smaller	particles,	illustrating	Brownian
motion	In	statistical	physics,	the	kinetic	theory	of	gases	applies	Newton's	laws	of	motion	to	large	numbers	(typically	on	the	order	of	the	Avogadro	number)	of	particles.	Kinetic	theory	can	explain,	for	example,	the	pressure	that	a	gas	exerts	upon	the	container	holding	it	as	the	aggregate	of	many	impacts	of	atoms,	each	imparting	a	tiny	amount	of
momentum.[71]: 62 	The	Langevin	equation	is	a	special	case	of	Newton's	second	law,	adapted	for	the	case	of	describing	a	small	object	bombarded	stochastically	by	even	smaller	ones.[78]: 235 	It	can	be	written	m	a	=	−	γ	v	+	ξ	{\displaystyle	m\mathbf	{a}	=-\gamma	\mathbf	{v}	+\mathbf	{\xi	}	\,}	where	γ	{\displaystyle	\gamma	}	is	a	drag	coefficient
and	ξ	{\displaystyle	\mathbf	{\xi	}	}	is	a	force	that	varies	randomly	from	instant	to	instant,	representing	the	net	effect	of	collisions	with	the	surrounding	particles.	This	is	used	to	model	Brownian	motion.[79]	Newton's	three	laws	can	be	applied	to	phenomena	involving	electricity	and	magnetism,	though	subtleties	and	caveats	exist.	Coulomb's	law	for
the	electric	force	between	two	stationary,	electrically	charged	bodies	has	much	the	same	mathematical	form	as	Newton's	law	of	universal	gravitation:	the	force	is	proportional	to	the	product	of	the	charges,	inversely	proportional	to	the	square	of	the	distance	between	them,	and	directed	along	the	straight	line	between	them.	The	Coulomb	force	that	a
charge	q	1	{\displaystyle	q_{1}}	exerts	upon	a	charge	q	2	{\displaystyle	q_{2}}	is	equal	in	magnitude	to	the	force	that	q	2	{\displaystyle	q_{2}}	exerts	upon	q	1	{\displaystyle	q_{1}}	,	and	it	points	in	the	exact	opposite	direction.	Coulomb's	law	is	thus	consistent	with	Newton's	third	law.[80]	Electromagnetism	treats	forces	as	produced	by	fields	acting
upon	charges.	The	Lorentz	force	law	provides	an	expression	for	the	force	upon	a	charged	body	that	can	be	plugged	into	Newton's	second	law	in	order	to	calculate	its	acceleration.[81]: 85 	According	to	the	Lorentz	force	law,	a	charged	body	in	an	electric	field	experiences	a	force	in	the	direction	of	that	field,	a	force	proportional	to	its	charge	q
{\displaystyle	q}	and	to	the	strength	of	the	electric	field.	In	addition,	a	moving	charged	body	in	a	magnetic	field	experiences	a	force	that	is	also	proportional	to	its	charge,	in	a	direction	perpendicular	to	both	the	field	and	the	body's	direction	of	motion.	Using	the	vector	cross	product,	F	=	q	E	+	q	v	×	B	.	{\displaystyle	\mathbf	{F}	=q\mathbf	{E}
+q\mathbf	{v}	\times	\mathbf	{B}	.}	The	Lorentz	force	law	in	effect:	electrons	are	bent	into	a	circular	trajectory	by	a	magnetic	field.If	the	electric	field	vanishes	(	E	=	0	{\displaystyle	\mathbf	{E}	=0}	),	then	the	force	will	be	perpendicular	to	the	charge's	motion,	just	as	in	the	case	of	uniform	circular	motion	studied	above,	and	the	charge	will	circle
(or	more	generally	move	in	a	helix)	around	the	magnetic	field	lines	at	the	cyclotron	frequency	ω	=	q	B	/	m	{\displaystyle	\omega	=qB/m}	.[78]: 222 	Mass	spectrometry	works	by	applying	electric	and/or	magnetic	fields	to	moving	charges	and	measuring	the	resulting	acceleration,	which	by	the	Lorentz	force	law	yields	the	mass-to-charge	ratio.[82]
Collections	of	charged	bodies	do	not	always	obey	Newton's	third	law:	there	can	be	a	change	of	one	body's	momentum	without	a	compensatory	change	in	the	momentum	of	another.	The	discrepancy	is	accounted	for	by	momentum	carried	by	the	electromagnetic	field	itself.	The	momentum	per	unit	volume	of	the	electromagnetic	field	is	proportional	to
the	Poynting	vector.[83]: 184 [84]	There	is	subtle	conceptual	conflict	between	electromagnetism	and	Newton's	first	law:	Maxwell's	theory	of	electromagnetism	predicts	that	electromagnetic	waves	will	travel	through	empty	space	at	a	constant,	definite	speed.	Thus,	some	inertial	observers	seemingly	have	a	privileged	status	over	the	others,	namely	those
who	measure	the	speed	of	light	and	find	it	to	be	the	value	predicted	by	the	Maxwell	equations.	In	other	words,	light	provides	an	absolute	standard	for	speed,	yet	the	principle	of	inertia	holds	that	there	should	be	no	such	standard.	This	tension	is	resolved	in	the	theory	of	special	relativity,	which	revises	the	notions	of	space	and	time	in	such	a	way	that
all	inertial	observers	will	agree	upon	the	speed	of	light	in	vacuum.[note	12]	Further	information:	Relativistic	mechanics	and	Acceleration	(special	relativity)	In	special	relativity,	the	rule	that	Wilczek	called	"Newton's	Zeroth	Law"	breaks	down:	the	mass	of	a	composite	object	is	not	merely	the	sum	of	the	masses	of	the	individual	pieces.[87]: 33 	Newton's
first	law,	inertial	motion,	remains	true.	A	form	of	Newton's	second	law,	that	force	is	the	rate	of	change	of	momentum,	also	holds,	as	does	the	conservation	of	momentum.	However,	the	definition	of	momentum	is	modified.	Among	the	consequences	of	this	is	the	fact	that	the	more	quickly	a	body	moves,	the	harder	it	is	to	accelerate,	and	so,	no	matter
how	much	force	is	applied,	a	body	cannot	be	accelerated	to	the	speed	of	light.	Depending	on	the	problem	at	hand,	momentum	in	special	relativity	can	be	represented	as	a	three-dimensional	vector,	p	=	m	γ	v	{\displaystyle	\mathbf	{p}	=m\gamma	\mathbf	{v}	}	,	where	m	{\displaystyle	m}	is	the	body's	rest	mass	and	γ	{\displaystyle	\gamma	}	is	the
Lorentz	factor,	which	depends	upon	the	body's	speed.	Alternatively,	momentum	and	force	can	be	represented	as	four-vectors.[88]: 107 	Newton's	third	law	must	be	modified	in	special	relativity.	The	third	law	refers	to	the	forces	between	two	bodies	at	the	same	moment	in	time,	and	a	key	feature	of	special	relativity	is	that	simultaneity	is	relative.	Events
that	happen	at	the	same	time	relative	to	one	observer	can	happen	at	different	times	relative	to	another.	So,	in	a	given	observer's	frame	of	reference,	action	and	reaction	may	not	be	exactly	opposite,	and	the	total	momentum	of	interacting	bodies	may	not	be	conserved.	The	conservation	of	momentum	is	restored	by	including	the	momentum	stored	in	the
field	that	describes	the	bodies'	interaction.[89][90]	Newtonian	mechanics	is	a	good	approximation	to	special	relativity	when	the	speeds	involved	are	small	compared	to	that	of	light.[91]: 131 	General	relativity	is	a	theory	of	gravity	that	advances	beyond	that	of	Newton.	In	general	relativity,	the	gravitational	force	of	Newtonian	mechanics	is	reimagined
as	curvature	of	spacetime.	A	curved	path	like	an	orbit,	attributed	to	a	gravitational	force	in	Newtonian	mechanics,	is	not	the	result	of	a	force	deflecting	a	body	from	an	ideal	straight-line	path,	but	rather	the	body's	attempt	to	fall	freely	through	a	background	that	is	itself	curved	by	the	presence	of	other	masses.	A	remark	by	John	Archibald	Wheeler	that
has	become	proverbial	among	physicists	summarizes	the	theory:	"Spacetime	tells	matter	how	to	move;	matter	tells	spacetime	how	to	curve."[92][93]	Wheeler	himself	thought	of	this	reciprocal	relationship	as	a	modern,	generalized	form	of	Newton's	third	law.[92]	The	relation	between	matter	distribution	and	spacetime	curvature	is	given	by	the
Einstein	field	equations,	which	require	tensor	calculus	to	express.[87]: 43 [94]	The	Newtonian	theory	of	gravity	is	a	good	approximation	to	the	predictions	of	general	relativity	when	gravitational	effects	are	weak	and	objects	are	moving	slowly	compared	to	the	speed	of	light.[85]: 327 [95]	Quantum	mechanics	is	a	theory	of	physics	originally	developed	in
order	to	understand	microscopic	phenomena:	behavior	at	the	scale	of	molecules,	atoms	or	subatomic	particles.	Generally	and	loosely	speaking,	the	smaller	a	system	is,	the	more	an	adequate	mathematical	model	will	require	understanding	quantum	effects.	The	conceptual	underpinning	of	quantum	physics	is	very	different	from	that	of	classical	physics.
Instead	of	thinking	about	quantities	like	position,	momentum,	and	energy	as	properties	that	an	object	has,	one	considers	what	result	might	appear	when	a	measurement	of	a	chosen	type	is	performed.	Quantum	mechanics	allows	the	physicist	to	calculate	the	probability	that	a	chosen	measurement	will	elicit	a	particular	result.[96][97]	The	expectation
value	for	a	measurement	is	the	average	of	the	possible	results	it	might	yield,	weighted	by	their	probabilities	of	occurrence.[98]	The	Ehrenfest	theorem	provides	a	connection	between	quantum	expectation	values	and	Newton's	second	law,	a	connection	that	is	necessarily	inexact,	as	quantum	physics	is	fundamentally	different	from	classical.	In	quantum
physics,	position	and	momentum	are	represented	by	mathematical	entities	known	as	Hermitian	operators,	and	the	Born	rule	is	used	to	calculate	the	expectation	values	of	a	position	measurement	or	a	momentum	measurement.	These	expectation	values	will	generally	change	over	time;	that	is,	depending	on	the	time	at	which	(for	example)	a	position
measurement	is	performed,	the	probabilities	for	its	different	possible	outcomes	will	vary.	The	Ehrenfest	theorem	says,	roughly	speaking,	that	the	equations	describing	how	these	expectation	values	change	over	time	have	a	form	reminiscent	of	Newton's	second	law.	However,	the	more	pronounced	quantum	effects	are	in	a	given	situation,	the	more
difficult	it	is	to	derive	meaningful	conclusions	from	this	resemblance.[note	13]	Isaac	Newton	(1643–1727),	in	a	1689	portrait	by	Godfrey	Kneller	Newton's	own	copy	of	his	Principia,	with	hand-written	corrections	for	the	second	edition,	in	the	Wren	Library	at	Trinity	College,	Cambridge	Newton's	first	and	second	laws,	in	Latin,	from	the	original	1687
Principia	Mathematica	The	concepts	invoked	in	Newton's	laws	of	motion	—	mass,	velocity,	momentum,	force	—	have	predecessors	in	earlier	work,	and	the	content	of	Newtonian	physics	was	further	developed	after	Newton's	time.	Newton	combined	knowledge	of	celestial	motions	with	the	study	of	events	on	Earth	and	showed	that	one	theory	of
mechanics	could	encompass	both.[note	14]	As	noted	by	scholar	I.	Bernard	Cohen,	Newton's	work	was	more	than	a	mere	synthesis	of	previous	results,	as	he	selected	certain	ideas	and	further	transformed	them,	with	each	in	a	new	form	that	was	useful	to	him,	while	at	the	same	time	proving	false	of	certain	basic	or	fundamental	principles	of	scientists
such	as	Galileo	Galilei,	Johannes	Kepler,	René	Descartes,	and	Nicolaus	Copernicus.[103]	He	approached	natural	philosophy	with	mathematics	in	a	completely	novel	way,	in	that	instead	of	a	preconceived	natural	philosophy,	his	style	was	to	begin	with	a	mathematical	construct,	and	build	on	from	there,	comparing	it	to	the	real	world	to	show	that	his
system	accurately	accounted	for	it.[104]	Aristotle	(384–322	BCE)	The	subject	of	physics	is	often	traced	back	to	Aristotle,	but	the	history	of	the	concepts	involved	is	obscured	by	multiple	factors.	An	exact	correspondence	between	Aristotelian	and	modern	concepts	is	not	simple	to	establish:	Aristotle	did	not	clearly	distinguish	what	we	would	call	speed
and	force,	used	the	same	term	for	density	and	viscosity,	and	conceived	of	motion	as	always	through	a	medium,	rather	than	through	space.	In	addition,	some	concepts	often	termed	"Aristotelian"	might	better	be	attributed	to	his	followers	and	commentators	upon	him.[105]	These	commentators	found	that	Aristotelian	physics	had	difficulty	explaining
projectile	motion.[note	15]	Aristotle	divided	motion	into	two	types:	"natural"	and	"violent".	The	"natural"	motion	of	terrestrial	solid	matter	was	to	fall	downwards,	whereas	a	"violent"	motion	could	push	a	body	sideways.	Moreover,	in	Aristotelian	physics,	a	"violent"	motion	requires	an	immediate	cause;	separated	from	the	cause	of	its	"violent"	motion,	a
body	would	revert	to	its	"natural"	behavior.	Yet,	a	javelin	continues	moving	after	it	leaves	the	thrower's	hand.	Aristotle	concluded	that	the	air	around	the	javelin	must	be	imparted	with	the	ability	to	move	the	javelin	forward.	John	Philoponus,	a	Byzantine	Greek	thinker	active	during	the	sixth	century,	found	this	absurd:	the	same	medium,	air,	was
somehow	responsible	both	for	sustaining	motion	and	for	impeding	it.	If	Aristotle's	idea	were	true,	Philoponus	said,	armies	would	launch	weapons	by	blowing	upon	them	with	bellows.	Philoponus	argued	that	setting	a	body	into	motion	imparted	a	quality,	impetus,	that	would	be	contained	within	the	body	itself.	As	long	as	its	impetus	was	sustained,	the
body	would	continue	to	move.[107]: 47 	In	the	following	centuries,	versions	of	impetus	theory	were	advanced	by	individuals	including	Nur	ad-Din	al-Bitruji,	Avicenna,	Abu'l-Barakāt	al-Baghdādī,	John	Buridan,	and	Albert	of	Saxony.	In	retrospect,	the	idea	of	impetus	can	be	seen	as	a	forerunner	of	the	modern	concept	of	momentum.[note	16]	The	intuition
that	objects	move	according	to	some	kind	of	impetus	persists	in	many	students	of	introductory	physics.[109]	See	also:	Galileo	Galilei	§	Inertia	The	French	philosopher	René	Descartes	introduced	the	concept	of	inertia	by	way	of	his	"laws	of	nature"	in	The	World	(Traité	du	monde	et	de	la	lumière)	written	1629–33.	However,	The	World	purported	a
heliocentric	worldview,	and	in	1633	this	view	had	given	rise	a	great	conflict	between	Galileo	Galilei	and	the	Roman	Catholic	Inquisition.	Descartes	knew	about	this	controversy	and	did	not	wish	to	get	involved.	The	World	was	not	published	until	1664,	ten	years	after	his	death.[110]	Galileo	Galilei	(1564–1642)	The	modern	concept	of	inertia	is	credited
to	Galileo.	Based	on	his	experiments,	Galileo	concluded	that	the	"natural"	behavior	of	a	moving	body	was	to	keep	moving,	until	something	else	interfered	with	it.	In	Two	New	Sciences	(1638)	Galileo	wrote:[111][112]Imagine	any	particle	projected	along	a	horizontal	plane	without	friction;	then	we	know,	from	what	has	been	more	fully	explained	in	the
preceding	pages,	that	this	particle	will	move	along	this	same	plane	with	a	motion	which	is	uniform	and	perpetual,	provided	the	plane	has	no	limits.René	Descartes	(1596–1650)Galileo	recognized	that	in	projectile	motion,	the	Earth's	gravity	affects	vertical	but	not	horizontal	motion.[113]	However,	Galileo's	idea	of	inertia	was	not	exactly	the	one	that
would	be	codified	into	Newton's	first	law.	Galileo	thought	that	a	body	moving	a	long	distance	inertially	would	follow	the	curve	of	the	Earth.	This	idea	was	corrected	by	Isaac	Beeckman,	Descartes,	and	Pierre	Gassendi,	who	recognized	that	inertial	motion	should	be	motion	in	a	straight	line.[114]	Descartes	published	his	laws	of	nature	(laws	of	motion)
with	this	correction	in	Principles	of	Philosophy	(Principia	Philosophiae)	in	1644,	with	the	heliocentric	part	toned	down.[115][110]	Ball	in	circular	motion	has	string	cut	and	flies	off	tangentially.	First	Law	of	Nature:	Each	thing	when	left	to	itself	continues	in	the	same	state;	so	any	moving	body	goes	on	moving	until	something	stops	it.Second	Law	of
Nature:	Each	moving	thing	if	left	to	itself	moves	in	a	straight	line;	so	any	body	moving	in	a	circle	always	tends	to	move	away	from	the	centre	of	the	circle.	According	to	American	philosopher	Richard	J.	Blackwell,	Dutch	scientist	Christiaan	Huygens	had	worked	out	his	own,	concise	version	of	the	law	in	1656.[116]	It	was	not	published	until	1703,	eight
years	after	his	death,	in	the	opening	paragraph	of	De	Motu	Corporum	ex	Percussione.	Hypothesis	I:	Any	body	already	in	motion	will	continue	to	move	perpetually	with	the	same	speed	and	in	a	straight	line	unless	it	is	impeded.	According	to	Huygens,	this	law	was	already	known	by	Galileo	and	Descartes	among	others.[116]	Christiaan	Huygens	(1629–
1695)	Christiaan	Huygens,	in	his	Horologium	Oscillatorium	(1673),	put	forth	the	hypothesis	that	"By	the	action	of	gravity,	whatever	its	sources,	it	happens	that	bodies	are	moved	by	a	motion	composed	both	of	a	uniform	motion	in	one	direction	or	another	and	of	a	motion	downward	due	to	gravity."	Newton's	second	law	generalized	this	hypothesis	from
gravity	to	all	forces.[117]	One	important	characteristic	of	Newtonian	physics	is	that	forces	can	act	at	a	distance	without	requiring	physical	contact.[note	17]	For	example,	the	Sun	and	the	Earth	pull	on	each	other	gravitationally,	despite	being	separated	by	millions	of	kilometres.	This	contrasts	with	the	idea,	championed	by	Descartes	among	others,	that
the	Sun's	gravity	held	planets	in	orbit	by	swirling	them	in	a	vortex	of	transparent	matter,	aether.[124]	Newton	considered	aetherial	explanations	of	force	but	ultimately	rejected	them.[122]	The	study	of	magnetism	by	William	Gilbert	and	others	created	a	precedent	for	thinking	of	immaterial	forces,[122]	and	unable	to	find	a	quantitatively	satisfactory
explanation	of	his	law	of	gravity	in	terms	of	an	aetherial	model,	Newton	eventually	declared,	"I	feign	no	hypotheses":	whether	or	not	a	model	like	Descartes's	vortices	could	be	found	to	underlie	the	Principia's	theories	of	motion	and	gravity,	the	first	grounds	for	judging	them	must	be	the	successful	predictions	they	made.[125]	And	indeed,	since
Newton's	time	every	attempt	at	such	a	model	has	failed.	Johannes	Kepler	(1571–1630)	Johannes	Kepler	suggested	that	gravitational	attractions	were	reciprocal	—	that,	for	example,	the	Moon	pulls	on	the	Earth	while	the	Earth	pulls	on	the	Moon	—	but	he	did	not	argue	that	such	pairs	are	equal	and	opposite.[126]	In	his	Principles	of	Philosophy	(1644),
Descartes	introduced	the	idea	that	during	a	collision	between	bodies,	a	"quantity	of	motion"	remains	unchanged.	Descartes	defined	this	quantity	somewhat	imprecisely	by	adding	up	the	products	of	the	speed	and	"size"	of	each	body,	where	"size"	for	him	incorporated	both	volume	and	surface	area.[127]	Moreover,	Descartes	thought	of	the	universe	as	a
plenum,	that	is,	filled	with	matter,	so	all	motion	required	a	body	to	displace	a	medium	as	it	moved.	During	the	1650s,	Huygens	studied	collisions	between	hard	spheres	and	deduced	a	principle	that	is	now	identified	as	the	conservation	of	momentum.[128][129]	Christopher	Wren	would	later	deduce	the	same	rules	for	elastic	collisions	that	Huygens	had,
and	John	Wallis	would	apply	momentum	conservation	to	study	inelastic	collisions.	Newton	cited	the	work	of	Huygens,	Wren,	and	Wallis	to	support	the	validity	of	his	third	law.[130]	Newton	arrived	at	his	set	of	three	laws	incrementally.	In	a	1684	manuscript	written	to	Huygens,	he	listed	four	laws:	the	principle	of	inertia,	the	change	of	motion	by	force,
a	statement	about	relative	motion	that	would	today	be	called	Galilean	invariance,	and	the	rule	that	interactions	between	bodies	do	not	change	the	motion	of	their	center	of	mass.	In	a	later	manuscript,	Newton	added	a	law	of	action	and	reaction,	while	saying	that	this	law	and	the	law	regarding	the	center	of	mass	implied	one	another.	Newton	probably
settled	on	the	presentation	in	the	Principia,	with	three	primary	laws	and	then	other	statements	reduced	to	corollaries,	during	1685.[131]	Page	157	from	Mechanism	of	the	Heavens	(1831),	Mary	Somerville's	expanded	version	of	the	first	two	volumes	of	Laplace's	Traité	de	mécanique	céleste.[132]	Here,	Somerville	deduces	the	inverse-square	law	of
gravity	from	Kepler's	laws	of	planetary	motion.	Newton	expressed	his	second	law	by	saying	that	the	force	on	a	body	is	proportional	to	its	change	of	motion,	or	momentum.	By	the	time	he	wrote	the	Principia,	he	had	already	developed	calculus	(which	he	called	"the	science	of	fluxions"),	but	in	the	Principia	he	made	no	explicit	use	of	it,	perhaps	because
he	believed	geometrical	arguments	in	the	tradition	of	Euclid	to	be	more	rigorous.[133]: 15 [134]	Consequently,	the	Principia	does	not	express	acceleration	as	the	second	derivative	of	position,	and	so	it	does	not	give	the	second	law	as	F	=	m	a	{\displaystyle	F=ma}	.	This	form	of	the	second	law	was	written	(for	the	special	case	of	constant	force)	at	least
as	early	as	1716,	by	Jakob	Hermann;	Leonhard	Euler	would	employ	it	as	a	basic	premise	in	the	1740s.[135]	Euler	pioneered	the	study	of	rigid	bodies[136]	and	established	the	basic	theory	of	fluid	dynamics.[137]	Pierre-Simon	Laplace's	five-volume	Traité	de	mécanique	céleste	(1798–1825)	forsook	geometry	and	developed	mechanics	purely	through
algebraic	expressions,	while	resolving	questions	that	the	Principia	had	left	open,	like	a	full	theory	of	the	tides.[138]	The	concept	of	energy	became	a	key	part	of	Newtonian	mechanics	in	the	post-Newton	period.	Huygens'	solution	of	the	collision	of	hard	spheres	showed	that	in	that	case,	not	only	is	momentum	conserved,	but	kinetic	energy	is	as	well	(or,
rather,	a	quantity	that	in	retrospect	we	can	identify	as	one-half	the	total	kinetic	energy).	The	question	of	what	is	conserved	during	all	other	processes,	like	inelastic	collisions	and	motion	slowed	by	friction,	was	not	resolved	until	the	19th	century.	Debates	on	this	topic	overlapped	with	philosophical	disputes	between	the	metaphysical	views	of	Newton
and	Leibniz,	and	variants	of	the	term	"force"	were	sometimes	used	to	denote	what	we	would	call	types	of	energy.	For	example,	in	1742,	Émilie	du	Châtelet	wrote,	"Dead	force	consists	of	a	simple	tendency	to	motion:	such	is	that	of	a	spring	ready	to	relax;	living	force	is	that	which	a	body	has	when	it	is	in	actual	motion."	In	modern	terminology,	"dead
force"	and	"living	force"	correspond	to	potential	energy	and	kinetic	energy	respectively.[139]	Conservation	of	energy	was	not	established	as	a	universal	principle	until	it	was	understood	that	the	energy	of	mechanical	work	can	be	dissipated	into	heat.[140][141]	With	the	concept	of	energy	given	a	solid	grounding,	Newton's	laws	could	then	be	derived
within	formulations	of	classical	mechanics	that	put	energy	first,	as	in	the	Lagrangian	and	Hamiltonian	formulations	described	above.	Modern	presentations	of	Newton's	laws	use	the	mathematics	of	vectors,	a	topic	that	was	not	developed	until	the	late	19th	and	early	20th	centuries.	Vector	algebra,	pioneered	by	Josiah	Willard	Gibbs	and	Oliver
Heaviside,	stemmed	from	and	largely	supplanted	the	earlier	system	of	quaternions	invented	by	William	Rowan	Hamilton.[142][143]	Euler's	laws	of	motion	History	of	classical	mechanics	List	of	eponymous	laws	List	of	equations	in	classical	mechanics	List	of	scientific	laws	named	after	people	List	of	textbooks	on	classical	mechanics	and	quantum
mechanics	Norton's	dome	^	See,	for	example,	Zain.[4]: 1-2 	David	Tong	observes,	"A	particle	is	defined	to	be	an	object	of	insignificant	size:	e.g.	an	electron,	a	tennis	ball	or	a	planet.	Obviously	the	validity	of	this	statement	depends	on	the	context..."[5]	^	Negative	acceleration	includes	both	slowing	down	(when	the	current	velocity	is	positive)	and
speeding	up	(when	the	current	velocity	is	negative).	For	this	and	other	points	that	students	have	often	found	difficult,	see	McDermott	et	al.[8]	^	Per	Cohen	and	Whitman.[2]	For	other	phrasings,	see	Eddington[14]	and	Frautschi	et	al.[15]: 114 	Andrew	Motte's	1729	translation	rendered	Newton's	"nisi	quatenus"	as	unless	instead	of	except	insofar,
which	Hoek	argues	was	erroneous.[16][17]	^	One	textbook	observes	that	a	block	sliding	down	an	inclined	plane	is	what	"some	cynics	view	as	the	dullest	problem	in	all	of	physics".[23]: 70 	Another	quips,	"Nobody	will	ever	know	how	many	minds,	eager	to	learn	the	secrets	of	the	universe,	found	themselves	studying	inclined	planes	and	pulleys	instead,
and	decided	to	switch	to	some	more	interesting	profession."[15]: 173 	^	For	example,	José	and	Saletan	(following	Mach	and	Eisenbud[27])	take	the	conservation	of	momentum	as	a	fundamental	physical	principle	and	treat	F	=	m	a	{\displaystyle	\mathbf	{F}	=m\mathbf	{a}	}	as	a	definition	of	"force".[19]: 9 	See	also	Frautschi	et	al.,[15]: 134 	as	well	as
Feynman,	Leighton	and	Sands,[28]: 12-1 	who	argue	that	the	second	law	is	incomplete	without	a	specification	of	a	force	by	another	law,	like	the	law	of	gravity.	Kleppner	and	Kolenkow	argue	that	the	second	law	is	incomplete	without	the	third	law:	an	observer	who	sees	one	body	accelerate	without	a	matching	acceleration	of	some	other	body	to
compensate	would	conclude,	not	that	a	force	is	acting,	but	that	they	are	not	an	inertial	observer.[23]: 60 	Landau	and	Lifshitz	bypass	the	question	by	starting	with	the	Lagrangian	formalism	rather	than	the	Newtonian.[29]	^	See,	for	instance,	Moebs	et	al.,[31]	Gonick	and	Huffman,[32]	Low	and	Wilson,[33]	Stocklmayer	et	al.,[34]	Hellingman,[35]	and
Hodanbosi.[36]	^	See,	for	example,	Frautschi	et	al.[15]: 356 	^	For	the	former,	see	Greiner,[39]	or	Wachter	and	Hoeber.[40]	For	the	latter,	see	Tait[41]	and	Heaviside.[42]	^	Among	the	many	textbook	explanations	of	this	are	Frautschi	et	al.[15]: 104 	and	Boas.[46]: 287 	^	Among	the	many	textbook	treatments	of	this	point	are	Hand	and	Finch[49]: 81 
and	also	Kleppner	and	Kolenkow.[23]: 103 	^	Treatments	can	be	found	in,	e.g.,	Chabay	et	al.[53]	and	McCallum	et	al.[54]: 449 	^	Discussions	can	be	found	in,	for	example,	Frautschi	et	al.,[15]: 215 	Panofsky	and	Phillips,[83]: 272 	Goldstein,	Poole	and	Safko,[85]: 277 	and	Werner.[86]	^	Details	can	be	found	in	the	textbooks	by,	e.g.,	Cohen-Tannoudji	et	al.
[99]: 242 	and	Peres.[100]: 302 	^	As	one	physicist	writes,	"Physical	theory	is	possible	because	we	are	immersed	and	included	in	the	whole	process	–	because	we	can	act	on	objects	around	us.	Our	ability	to	intervene	in	nature	clarifies	even	the	motion	of	the	planets	around	the	sun	–	masses	so	great	and	distances	so	vast	that	our	roles	as	participants
seem	insignificant.	Newton	was	able	to	transform	Kepler's	kinematical	description	of	the	solar	system	into	a	far	more	powerful	dynamical	theory	because	he	added	concepts	from	Galileo's	experimental	methods	–	force,	mass,	momentum,	and	gravitation.	The	truly	external	observer	will	only	get	as	far	as	Kepler.	Dynamical	concepts	are	formulated	on
the	basis	of	what	we	can	set	up,	control,	and	measure."[101]	See,	for	example,	Caspar	and	Hellman.[102]	^	Aristotelian	physics	also	had	difficulty	explaining	buoyancy,	a	point	that	Galileo	tried	to	resolve	without	complete	success.[106]	^	Anneliese	Maier	cautions,	"Impetus	is	neither	a	force,	nor	a	form	of	energy,	nor	momentum	in	the	modern	sense;
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