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Set	Theory	is	a	branch	of	mathematics	that	investigates	sets	and	their	properties.	The	basic	concepts	of	set	theory	are	fairly	easy	to	understand	and	appear	to	be	self-evident.	However,	despite	its	apparent	simplicity,	set	theory	turns	out	to	be	a	very	sophisticated	subject.	In	particular,	mathematicians	have	shown	that	virtually	all	mathematical
concepts	and	results	can	be	formalized	within	the	theory	of	sets.	This	is	considered	to	be	one	of	the	greatest	achievements	of	modern	mathematics.	Given	this	achievement,	one	can	claim	that	set	theory	provides	a	foundation	for	mathematics.The	foundational	role	of	set	theory	and	its	mathematical	development	have	raised	many	philosophical
questions	that	have	been	debated	since	its	inception	in	the	late	nineteenth	century.	For	example,	here	are	three:	Does	infinity	exist,	and	if	so,	are	there	different	kinds	of	infinity?	Is	there	a	mathematical	universe?	Are	all	mathematical	problems	solvable?Before	pursuing	the	philosophical	issues	concerning	set	theory,	one	should	be	familiar	with	a
standard	mathematical	development	of	set	theory.	This	article	presents	such	a	development.In	the	late	nineteenth	century,	the	mathematician	Georg	Cantor	(18451918)	created	and	developed	a	mathematical	theory	of	sets.	This	theory	emerged	from	his	proof	of	an	important	theorem	in	real	analysis.	In	this	proof,	Cantor	introduced	a	process	for
forming	sets	of	real	numbers	that	involved	an	infinite	iteration	of	the	limit	operation.	Cantors	novel	proof	led	him	to	a	deeper	investigation	of	sets	of	real	numbers	and	to	his	theory	of	abstract	sets.	Cantors	creation	now	pervades	all	of	mathematics	and	offers	a	versatile	tool	for	exploring	concepts	that	were	once	considered	to	be	ineffable,	such	as
infinity	and	infinite	sets.Sections	1	and	2	below	describe	the	nave	principles	of	set	theory	that	were	used	and	developed	by	Cantor.	Then,	Section	3	describes	a	more	sophisticated	(axiomatic)	approach	to	set	theory	that	arose	from	the	discovery	of	Russells	paradox.	After	identifying	the	Zermelo-Frankel	axioms	of	set	theory,	Section	4	discusses	Cantors
well-ordering	principle	and	examines	how	Cantor	used	the	well-ordering	principle	to	develop	the	ordinal	and	cardinal	numbers.	Section	5	considers	controversies	concerning	the	well-ordering	principle	and	its	equivalent,	the	axiom	of	choice.	This	is	followed	by	introducing	the	cumulative	hierarchy	of	sets,	Kurt	Gdels	universe	of	constructible	sets,	and
Paul	Cohens	method	of	forcing	in	Sections	6,	7,	and	8,	respectively.	The	latter	two	topics,	explored	in	Sections	7	and	8,	can	be	used	to	show	that	certain	questions	are	unresolvable	when	assuming	the	Zermelo-Frankel	axioms	(with	or	without	the	axiom	of	choice).	The	next	two	sections	address	further	developments	in	set	theory	that	are	intended	to
settle	these	and	other	unresolved	questions;	namely,	Section	9	discusses	large	cardinal	axioms,	and	Section	10	investigates	the	axiom	of	determinacy.Table	of	Contents	1.	On	the	OriginsLet	us	first	discuss	a	few	basic	concepts	of	set	theory.	A	set	is	a	well-defined	collection	of	objects.	The	items	in	such	a	collection	are	called	the	elements	or	members	of
the	set.	The	symbol	\(\in\)	is	used	to	indicate	membership	in	a	set.	Thus,	if	\(A\)	is	a	set,	we	write	\(x	\in	A\)	to	say	that	\(x\)	is	an	element	of	\(A\),	or	\(x\)	is	in	\(A\),	or	\(x\)	is	a	member	of	\(A\).	We	also	write	\(x	otin	A\)	to	say	that	\(x\)	is	not	in	\(A\).	In	mathematics,	a	set	is	usually	a	collection	of	mathematical	objects,	for	example,	numbers,	functions,	or
other	sets.Sometimes	a	set	is	identified	by	enclosing	a	list	of	its	elements	by	curly	brackets;	for	example,	a	set	of	natural	numbers	\(A\)	can	be	identified	by	the	notation\(A	=	\{1,2,3,4,5,6,7,8,9\}\).More	typically,	one	forms	a	set	by	enclosing	a	particular	expression	within	curly	brackets,	where	the	expression	identifies	the	elements	of	the	set.	To
illustrate	this	method	of	identifying	a	set,	we	can	form	a	set	B	of	even	natural	numbers,	using	the	above	set	\(A\),	as	follows:\(B	=	\{n	\in	A	:	n	\text{	is	even}\}\).which	can	be	read	as	the	set	of	\(n	\in	A\)	such	that	\(n\)	is	even.	Of	course,\(\{n	\in	A	:	n\)	is	even\(\}	=	\{2,4,6,8\}\).It	is	difficult	to	identify	the	genesis	of	the	set	concept.	Yet,	the	idea	of	a
finite	collection	of	objects	has	existed	for	as	long	as	the	concept	of	counting.	Indeed,	mathematicians	have	been	investigating	finite	sets	and	methods	for	measuring	the	size	of	finite	sets	since	the	beginning	of	mathematics.	For	example,	the	above	two	sets\(A=\{1,2,3,4,5,6,7,8,9\}\)	are	finite	sets.	As	every	element	in	\(B\)	is	an	element	in	\(A\),	the	set	\
(B\)	is	said	to	be	a	subset	of	\(A\),	denoted	by	\(B	\subseteq	A\).	Since	there	are	elements	in	\(A\)	that	are	not	in	\(B\),	we	say	that	\(B\)	is	a	proper	subset	of	\(A\).	Moreover,	the	number	of	elements	in	\(B\)	is	strictly	smaller	than	the	number	of	elements	in	\(A\).	Thus,	one	can	say,	the	whole	\(A\)	is	greater	in	size	than	its	proper	part	\(B\).Infinite	sets	lead
to	an	apparent	contradiction.	Consider	the	infinite	sets:\(C=\{0,1,2,3,\ldots	\}\)\(D=\{1,3,5,7,	\ldots	\}\).We	view	the	sets	\(C\)	and	\(D\)	as	existing	entities	that	both	contain	infinitely	many	elements.	Thus,	\(C\)	and	\(D\)	are	completed	infinities.	Observe	that	every	element	in	\(D\)	is	in	\(C\),	and	that	\(D\)	is	a	proper	subset	of	\(C\).	However,	if,	as	many
mathematicians	once	believed,	infinity	cannot	be	greater	than	infinity,	then	the	whole	\(C\)	is	not	greater	in	size	than	its	proper	part	\(D\).	This	counterintuitive	result	was	viewed	by	many	early	prominent	mathematicians	as	being	contradictory,	as	it	appeared	to	conflict	with	the	well-understood	behavior	of	finite	sets.	These	mathematicians	thus
concluded	that	the	concept	of	a	completed	infinity	should	not	be	allowed	in	mathematics.For	this	reason,	before	Cantor,	a	majority	of	mathematicians	considered	infinite	collections	to	be	mathematically	illicit	objects.	Cantor	was	the	first	mathematician	to	view	infinite	sets	as	being	legitimate	mathematical	objects	that	can	coexist	with	finite	sets.
Clearly,	the	size	of	a	finite	set	can	be	measured	simply	by	counting	the	number	of	elements	in	the	set.	Cantor	was	the	first	to	investigate	the	following	question:Can	the	concept	of	size	be	extended	to	infinite	sets?Cantor	addressed	this	question	in	the	affirmative	by	using	the	concept	of	a	function	to	measure	and	compare	the	sizes	of	infinite	sets.
Functions	are	widely	used	in	science	and	mathematics.	For	sets	\(A\)	and	\(B\),	we	say	that	\(f\)	is	a	function	from	\(A\)	to	\(B\),	denoted	by	\(f\):	\(A	\rightarrow	B\),	if	and	only	if	\(f\)	is	a	relation	(operation)	that	assigns	to	each	element	\(x\)	in	\(A\),	a	single	element	\(f(x)\)	in	\(B\).	There	are	three	important	properties	that	a	function	might	possess:\(f\):	\
(A	\rightarrow	B\)	is	an	injection	if	and	only	if	for	each	\(y\)	in	\(B\)	there	is	at	most	one	\(x\)	in	\(A\)	such	that	\(f(x)=y\).\(f\):	\(A	\rightarrow	B\)	is	a	surjection	if	and	only	if	for	each	\(y\)	in	\(B\)	there	is	at	least	one	\(x\)	in	\(A\)	such	that	\(f(x)=y\).\(f\):	\(A	\rightarrow	B\)	is	a	bijection	if	and	only	if	for	each	\(y\)	in	\(B\)	there	is	exactly	one	\(x\)	in	\(A\)	such
that	\(f(x)=y\).Observe	that	\(f\):	\(A	\rightarrow	B\)	is	an	injection	if	and	only	if	distinct	elements	in	\(A\)	are	assigned	to	distinct	elements	in	\(B\);	that	is,	for	all	\(x\)	and	\(a\)	in	\(A\),	if	\(x	eq	a\),	then	\(f(x)	eq	f(a)\).	Also	note	that	\(f\):	\(A	\rightarrow	B\)	is	a	bijection	if	and	only	if	\(f\):	\(A\rightarrow	B\)	is	an	injection	and	a	surjection.Cantor	observed
that	two	sets	\(A\)	and	\(B\)	have	the	same	size	if	and	only	if	there	is	a	one-to-one	correspondence	between	\(A\)	and	\(B\),	that	is,	there	is	a	way	of	evenly	matching	the	elements	in	\(A\)	with	the	elements	in	\(B\).	In	other	words,	Cantor	noted	that	the	sets	\(A\)	and	\(B\)	have	the	same	size	if	and	only	if	there	is	a	bijection	\(f\):	\(A	\rightarrow	B\).	In	this
case,	Cantor	said	that	\(A\)	and	\(B\)	have	the	same	cardinality.	For	an	illustration,	let	\(\mathbb{N}	=	\{0,	1,	2,	3,	4,	\ldots	\}\)	be	the	set	of	natural	numbers	and	let	\(E	=	\{0,2,4,6,8,\ldots\}\)	be	the	set	of	even	natural	numbers.	Now	let	\(f\):	\(\mathbb{N}	\rightarrow	E\)	be	defined	by	\(f(n)=2n\).	One	can	verify	that	\(f\):	\(\mathbb{N}	\rightarrow	E\)
is	a	bijection	and,	thus,	we	obtain	the	following	one-to-one	correspondence	between	the	set	\(\mathbb{N}\)	of	natural	numbers	and	the	set	\(E\)	of	even	natural	numbers:Hence,	each	natural	number	\(n\)	corresponds	to	the	even	number	\(2n\),	and	each	even	natural	number	\(2i\)	is	thereby	matched	with	\(i	\in	\mathbb{N}\).	The	bijection	\(f\):	\
(\mathbb{N}	\rightarrow	E\)	specifies	a	one-to-one	match-up	between	the	elements	in	\(\mathbb{N}\)	and	the	elements	in	\(E\).	Cantor	concluded	that	the	sets	N	and	E	have	the	same	cardinality.Cantor	also	defined	what	it	means	for	a	set	\(C\)	to	be	smaller,	in	size,	than	a	set	\(D\).	Specifically,	he	said	that	\(C\)	has	smaller	cardinality	(smaller	size)
than	\(D\)	if	and	only	if	there	is	an	injection	\(f\):	\(C	\rightarrow	D\)	but	there	is	no	bijection	\(g\):	\(C	\rightarrow	D\).	Cantor	then	proved	that	there	is	no	one-to-one	correspondence	between	the	set	of	real	numbers	and	the	set	of	natural	numbers.	Cantors	proof	showed	that	the	set	of	real	numbers	has	larger	cardinality	than	the	set	of	natural	numbers
(Cantor	1874).	This	stunning	result	is	the	basis	upon	which	set	theory	became	a	branch	of	mathematics.The	natural	numbers	\(0,	1,	2,	3,	\ldots\)	are	the	whole	numbers	that	are	typically	used	for	counting.	The	real	numbers	are	those	numbers	that	appear	on	the	number	line.	For	example,	the	natural	number	\(2\),	the	integer	\(-3\),	the	fraction	\(6/5\),
and	all	of	the	other	rational	numbers	are	real	numbers.	The	irrational	numbers,	such	as	\(\sqrt{2}\)	and	\(\pi\),	are	also	real	numbers.	Again,	let	\(\mathbb{N}	=	\{0,	1,	2,	3,	\ldots	\}\)	be	the	set	of	natural	numbers,	and	let	\(\mathbb{R}\)	be	the	set	of	real	numbers.	If	a	set	is	either	finite	or	has	the	same	cardinality	as	the	set	of	natural	numbers,	then
Cantor	said	that	it	is	countable.	Since	the	set	of	real	numbers	\(\mathbb{R}\)	is	larger,	in	size,	than	the	set	of	natural	numbers	\(\mathbb{N}\),	Cantor	referred	to	the	set	\(\mathbb{R}\)	as	being	uncountable.After	proving	that	the	set	of	real	numbers	is	uncountable,	Cantor	was	able	to	prove	that	there	is	an	increasing	sequence	of	larger	and	larger
infinite	sets.	In	other	words,	Cantor	showed	that	there	are	infinitely	many	different	infinites,	a	result	with	clear	philosophical	and	mathematical	significance.After	his	introduction	of	uncountable	sets,	in	1878,	Cantor	announced	his	Continuum	Hypothesis	(CH),	which	states	that	every	infinite	set	of	real	numbers	is	either	the	same	size	as	the	set	of
natural	numbers	or	the	same	size	as	the	entire	set	of	real	numbers.	There	is	no	intermediate	size.	Cantor	struggled,	without	success,	for	most	of	his	career	to	resolve	the	Continuum	Hypothesis.	The	problem	persisted	and	became	one	of	the	most	important	unsolved	problems	of	the	twentieth	century.	After	Cantors	death,	most	set	theorists	came	to
believe	that	the	Continuum	Hypothesis	is	unresolvable.Cantors	profound	results	on	the	theory	of	infinite	sets	were	counterintuitive	to	many	of	his	contemporaries.	Moreover,	Cantors	set	theory	violated	the	prevailing	dogma	that	the	notion	of	a	completed	infinity	should	not	be	allowed	in	mathematics.	Thus,	the	outcry	of	opposition	persisted.	Influential
mathematicians	continued	to	argue	that	Cantors	work	was	subversive	to	the	true	nature	of	mathematics.	These	mathematicians	believed	that	infinite	sets	were	dangerous	fictional	creations	of	Cantors	imagination	and	that	Cantors	fictions	needed	to	be	eradicated	from	mathematics	(Dauben	1979,	page	1)	(Dunham	1990,	pp.	278-280).	Nevertheless,
Cantors	theory	of	sets	soon	became	a	crucial	tool	used	in	the	discovery	and	establishment	of	new	mathematical	results,	for	example,	in	measure	theory	and	the	theory	of	functions	(Kanamori	2012).	Mathematicians	slowly	began	to	see	the	utility	of	set	theory	to	traditional	mathematics.	Accordingly,	attitudes	started	to	change	and	Cantors	ideas	began
to	gain	acceptance	in	the	mathematical	community	(Dauben	1979,	pp.	247-248).	The	significance	of	Cantors	mathematical	research	was	eventually	recognized.	David	Hilbert,	a	prominent	twentieth	century	mathematician,	described	Cantors	work	as	beingthe	finest	product	of	mathematical	genius	and	one	of	the	supreme	achievements	of	purely
intellectual	human	activity.	(Hilbert	1923)Ultimately,	Cantors	theory	of	abstract	sets	would	dramatically	change	the	course	of	mathematics.2.	Cantors	Development	of	Set	TheoryIn	his	development	of	set	theory,	Cantor	identified	a	single	fundamental	principle,	called	the	Comprehension	Principle,	under	which	one	can	form	a	set.	Cantors	principle
states	that,	given	any	specific	property	\(\varphi(x)\)	concerning	a	variable	\(x\),	the	collection	\(\{x	:	\varphi(x)\}\)	is	a	set,	where	\(\{x	:	\varphi(x)\}\)	is	the	set	of	all	objects	\(x\)	that	satisfy	the	property	\(\varphi(x)\).	For	example,	let	\(\psi(x)\)	be	the	property	that	\(x\)	is	an	odd	natural	number.	The	Comprehension	Principle	implies	that\(S	=	\{	x	:	\psi
(x)\}	=	\{1,3,5,7,\ldots	\}\)is	a	set.	Employing	the	Comprehension	Principle,	one	can	form	the	intersection	of	two	sets	\(A\)	and	\(B\)	using	the	property	\(x	\in	A\)	and	\(x	\in	B\);	thus,	the	intersection	of	\(A\)	and	\(B\)	is	the	set\(A	\cap	B	=	\{x	:	x	\in	A\)	and	\(x	\in	B\}\).One	can	also	form	the	set\(A	\cup	B	=	\{x	:	x	\in	A\)	or	\(x	\in	B\}\)which	is	called	the
union	of	\(A\)	and	\(B\).	Recall	that	one	writes	\(X	\subseteq	A\)	to	mean	that	\(X\)	is	a	subset	of	\(A\),	that	is,	every	element	of	\(X\)	is	also	an	element	of	\(A\).	Using	the	Comprehension	Principle,	one	can	form	the	power	set	of	\(A\),	which	is	the	set	whose	elements	are	all	of	the	subsets	of	\(A\),	that	is,\(\wp(A)	=	\{	X	:	X	\subseteq	A\}.\)Thus,	if	\(A\)	is	a
set	and	\(X	\subseteq	A\),	then	\(X	\in	\wp(A)\).	So,	if	\(A	=	\{1,2,3\}\)	and	\(B	=	\{3,4,5\}\),	then	\(A	\cup	B	=	\{1,2,3,4,5\}\),	and\(\wp(A)	=	\{\varnothing,\{1\},\{2\},\{3\},\{1,2\},\{1,3\},\{2,3\},\{1,2,3\}\}\),where	\(\varnothing\)	denotes	the	empty	set,	that	is,	the	set	that	contains	no	elements.	The	Comprehension	Principle	was	an	essential	tool	that
allowed	Cantor	to	form	many	important	sets.	Cantors	approach	to	set	theory	is	often	referred	to	as	nave	set	theory.Cantors	set	theory	soon	became	a	very	powerful	tool	in	mathematics.	In	the	early	1900s,	the	mathematicians	mile	Borel,	Ren-Loius	Baire,	and	Henri	Lebesgue	used	Cantors	set	theoretic	concepts	to	develop	modern	measure	theory	and
function	theory	(Kanamori	2012).	This	work	clearly	demonstrated	the	great	mathematical	utility	of	set	theory.a.	Russells	ParadoxThe	philosopher	and	mathematician	Bertrand	Russell	was	interested	in	Cantors	work	and,	in	particular,	Cantors	proof	of	the	following	theorem,	which	implies	that	the	cardinality	of	the	power	set	of	a	set	is	larger	than	the
cardinality	of	the	set.	First,	recall	that	a	function	\(g\):	\(A	\rightarrow	B\)	is	a	surjection	(or	is	onto	\(B\))	if	for	all	\(y	\in	B\),	there	is	an	\(x	\in	A\)	such	that	\(g(x)=y\).Cantors	Theorem.	Let	\(A\)	be	a	set.	Then	there	is	no	surjection	\(f\):	\(A	\rightarrow	\wp(A)\).Proof.	Suppose,	for	the	sake	of	obtaining	a	contradiction,	that	there	exists	a	surjection	\(f\):	\(A
\rightarrow	\wp(A)\).	Observe	that,	for	all	\(z	\in	A\),	\(f(z)	\subseteq	A\).	By	the	Comprehension	Principle,	let	\(X\)	be	the	set\(X	=	\{x	:	x	\in	A\)	and	\(x	otin	f(x)\}\).Clearly,	\(X	\subseteq	A\).	Thus,	\(X	\in	\wp	(A)\).	As	\(f\)	is	onto	\(\wp(A)\),	there	is	an	\(a	\in	A\)	such	that	\(f(a)	=	X\).	There	are	two	cases	to	consider:	either	\(a	\in	X\)	or	\(a	otin	X\).	If	\(a	\in
X\),	then	the	definition	of	\(X\)	implies	that	\(a	otin	f(a)\).	Since	\(f(a)	=	X\),	we	have	that	\(a	otin	X\),	which	is	a	contradiction.	On	the	other	hand,	if	\(a	otin	X\),	then	the	definition	of	\(X\)	implies	that	\(a	\in	f(a)\).	Since	\(f(a)	=	X\),	we	see	that	\(a	\in	X\),	a	contradiction.	Thus,	there	is	no	surjection	\(f\):	\(A	\rightarrow	\wp(A)\).	This	completes	the	proof.In
1901,	after	reading	Cantors	proof	of	the	above	theorem,	that	was	published	in	1891,	Bertrand	Russell	discovered	a	devastating	contradiction	that	follows	from	the	Comprehension	Principle.	This	contradiction	is	known	as	Russells	Paradox.	Consider	the	property	\(x	otin	x\),	where	\(x\)	represents	an	arbitrary	set.	By	the	Comprehension	Principle,	we
conclude	that\(A	=	\{x	:	x	otin	x\}\)is	a	set.	The	set	\(A\)	consists	of	all	the	sets	\(x\)	that	satisfy	\(x	otin	x\).	Clearly,	either	\(A	\in	A\)	or	\(A	otin	A\).	Suppose	\(A	\in	A\).	Then,	the	definition	of	the	set	\(A\)	implies	that	\(A\)	must	satisfy	the	property	\(A	otin	A\),	which	contradicts	our	supposition.	Suppose	\(A	otin	A\).	Since	\(A\)	satisfies	\(A	otin	A\),	we
infer,	from	the	definition	of	\(A\),	that	\(A	\in	A\),	which	is	also	a	contradiction.There	were	similar	paradoxes	discovered	by	others,	including	Cantor	(Dauben	1979),	but	Russells	paradox	is	the	easiest	to	understand.	These	paradoxes	appeared	to	threaten	Cantors	fundamental	principle	that	he	used	to	develop	set	theory.	Nevertheless,	Cantor	did	not
believe	that	these	paradoxes	actually	refuted	his	development	of	set	theory.	He	knew	that	the	construction	of	certain	collections	can	lead	to	a	contradiction.	Cantor	referred	to	these	collections	as	inconsistent	multiplicities.	Today,	such	collections	are	called	proper	classes,	and	the	paradoxes	can	be	used	to	prove	that	they	are	not	sets.3.	The	Zermelo-
Fraenkel	AxiomsOver	time,	it	became	clear	that,	to	resolve	the	paradoxes	in	Cantors	set	theory,	the	Comprehension	Principle	needed	to	be	modified.	Thus,	the	following	question	needed	to	be	addressed:How	can	one	correctly	construct	a	set?Ernst	Zermelo	(18711953)	observed	that	to	eliminate	the	paradoxes,	the	Comprehension	Principle	could	be
restricted	as	follows:	Given	any	set	\(A\)	and	any	property	\(\psi	(x)\),	one	can	form	the	set	\(\{x	\in	A	:	\psi	(x)\}\),	that	is,	the	collection	of	all	elements	\(x	\in	A\)	that	satisfy	\(\psi	(x)\),	is	a	set.	Zermelos	approach	differs	from	Cantors	method	of	forming	a	set.	Cantor	declared	that	for	every	property	one	can	form	a	set	of	all	the	objects	that	satisfy	the
property.	Zermelo	adopted	a	different	approach:	To	form	a	set,	one	must	use	a	property	together	with	a	set.Zermelo	also	realized	that	in	order	to	more	fully	develop	Cantors	set	theory,	one	would	need	additional	methods	for	forming	sets.	Moreover,	these	additional	methods	would	need	to	avoid	the	paradoxes.	In	1908,	Zermelo	published	an	axiomatic
system	for	set	theory	that,	to	the	best	of	our	knowledge,	avoids	the	difficulties	faced	by	Cantors	development	of	set	theory.	In	1930,	after	receiving	some	proposed	revisions	from	Abraham	Fraenkel,	Zermelo	presented	his	final	axiomatization	of	set	theory,	now	known	as	the	Zermelo-Fraenkel	axioms	and	denoted	by	ZF.	These	axioms	have	become	the
accepted	formulation	of	Cantors	ideas	about	the	nature	of	sets.a.	The	AxiomsAs	noted	by	Zermelo,	to	avoid	paradoxes,	the	Comprehension	Principle	can	be	replaced	with	the	principle:	Given	a	set	\(A\)	and	a	property	\(\varphi	(x)\)	with	a	variable	\(x\),	the	collection	\(\{x	\in	A	:	\varphi	(x)\}\)	is	a	set.	However,	this	raises	a	new	question:	What	is	a
property?	The	most	favored	way	to	address	this	question	is	to	express	the	axioms	of	set	theory	in	the	formal	language	of	first-order	logic,	and	then	declare	that	its	formulas	designate	properties.	This	language	involves	variables	and	the	logical	connectives	\(\wedge\)	(and),	\(\vee\)	(or),	\(eg\)	(not),	(if	then	),	and	(if	and	only	if),	together	with	the
quantifier	symbols	\(\forall\)	(for	all)	and	\(\exists\)	(there	exists).	In	addition,	this	language	uses	the	relation	symbols	\(=\)	and	\(\in\)	(as	well	as	\(eq\)	and	\(otin\)).	In	this	language,	the	variables	and	quantifiers	range	over	sets	and	only	sets.	A	formula	constructed	in	this	formal	language	is	referred	to	as	a	formula	in	the	language	of	set	theory.	Such
formulas	are	used	to	give	meaning	to	the	notion	of	property.We	now	illustrate	the	expressive	power	of	this	set	theoretic	language.	The	formula	\(\exists	x(x	\in	A)\)	asserts	that	the	set	\(A\)	is	nonempty,	and	\(\forall	x(x	otin	A)\)	states	that	\(A\)	has	no	elements.	Moreover	\(eg	\exists	x	\forall	y(y	\in	x)\)	states	that	it	is	not	the	case	that	there	is	a	set	that
contains	all	sets	as	elements.	In	addition,	one	can	translate	English	statements,	which	concern	sets,	into	the	language	of	set	theory.	For	example,	the	English	sentence	the	set	\(A\)	contains	at	least	two	elements	can	be	translated	into	the	language	of	set	theory	by	\(\exists	x	\exists	y((x	\in	A	\wedge	y	\in	A)	\wedge	x	eq	y)\).There	is	another	quantifier,
called	the	uniqueness	quantifier,	that	is	sometimes	used.	This	quantifier	is	written	as	\(\exists	!	x	\varphi	(x)\)	and	it	means	that	there	exists	a	unique	\(x\)	satisfying	\(\varphi	(x)\).	This	is	in	contrast	with	\(\exists	x	\varphi(x)\),	which	simply	states	that	at	least	one	\(x\)	satisfies	\(\varphi	(x)\).	The	uniqueness	quantifier	is	used	as	a	convenience,	as	the
assertion	\(\exists	!x	\varphi	(x)\)	can	be	expressed	in	terms	of	the	other	quantifiers	\(\exists\)	and	\(\forall\);	namely,	it	is	equivalent	to	the	formula\(\exists	x	\varphi	(x)	\wedge	\forall	x	\forall	y	((\varphi	(x)	\wedge	\varphi	(y))	\rightarrow	x=y)\).The	above	formula	is	equivalent	to	\(\exists!x	\varphi	(x)\)	because	it	asserts	that	there	is	an	\(x\)	such	that	\
(\varphi(x)\)	holds,	and	any	sets	\(x\)	and	\(y\)	that	satisfy	\(\varphi	(x)\)	and	\(\varphi(y)\)	must	be	the	same	set.The	Zermelo-Fraenkel	axioms	are	listed	below.	Each	axiom	is	first	stated	in	English	and	then	written	in	logical	form.	After	each	logical	form,	there	is	a	discussion	of	the	axiom	and	some	of	its	consequences.	When	reading	these	axioms,	keep	in
mind	that,	in	Zermelo-Fraenkel	set	theory,	everything	is	a	set,	including	the	elements	of	a	set.	Also,	the	notation	\(\vartheta	(x,	\ldots,	z)\)	means	that	\(x,	\ldots,	z\)	are	free	variables	in	the	formula	\(\vartheta\)	and	that	\(\vartheta\)	is	allowed	to	contain	parameters	(free	variables	other	than	\(x,	\ldots,	z\))	that	represent	arbitrary	sets.	Extensionality
Axiom.	Two	sets	are	equal	if	and	only	if	they	have	the	same	elements.\(\forall	A	\forall	B	(	A	=	B	\leftrightarrow	\forall	x	(	x	\in	A	\leftrightarrow	x	\in	B))\).The	extensionality	axiom	is	essentially	a	definition	that	states	that	two	sets	are	equal	if	and	only	if	they	have	exactly	the	same	elements.	Empty	Set	Axiom.	There	is	a	set	with	no	elements.\(\exists	A
\forall	x	(	x	otin	A)\).The	empty	set	axiom	states	that	there	is	a	set	which	has	no	elements.	Since	the	extensionality	axiom	implies	that	this	set	is	unique,	we	let	\(\varnothing\)	denote	the	empty	set.	Subset	Axiom.	Let	\(\varphi(x)\)	be	a	formula.	For	every	set	\(A\),	there	is	a	set	\(S\)	that	consists	of	all	the	elements	\(x	\in	A\)	such	that	\(\varphi(x)\)	holds.\
(\forall	A	\exists	S	\forall	x	(	x	\in	S	\leftrightarrow	(	x	\in	A	\wedge	\varphi	(x)))\).(The	variable	\(S\)	is	assumed	not	to	appear	in	the	formula	\(\varphi	(x)\).)	The	subset	axiom,	also	known	as	the	axiom	of	separation,	asserts	that	any	definable	sub-collection	of	a	set	is	itself	a	set,	that	is,	for	any	formula	\(\varphi(x)\)	and	any	set	\(A\),	the	collection	\(\{x	\in
A	:	\varphi(x)\}\)	is	a	set.	Clearly,	the	subset	axiom	is	a	limited	form	of	the	Comprehension	Principle.	Yet,	it	does	not	lead	to	the	contradictions	that	result	from	the	Comprehension	Principle.	The	subset	axiom	is,	in	fact,	an	axiom	schema	since	it	yields	infinitely	many	axioms-one	for	each	formula	\(\varphi\).	Pairing	Axiom.	For	every	\(u\)	and	\(v\),	there
is	a	set	that	consists	of	just	\(u\)	and	\(v\).\(\forall	u	\forall	v	\exists	P	\forall	x	(	x	\in	P	\leftrightarrow	(	x	=u	\vee	x	=	v))\).The	pairing	axiom	states	that,	for	any	two	sets	\(u\)	and	\(v\),	the	set	\(\{u,	v\}\)	exists.	Thus,	by	the	extensionality	axiom,	the	set	\(\{u,	u\}	=	\{u\}\)	exists.	Union	Axiom.	For	every	set	\(F\),	there	exists	a	set	\(U\)	that	consists	of	all
the	elements	that	belong	to	at	least	one	set	in	\(F\).\(\forall	F	\exists	U	\forall	x	(	x	\in	U	\leftrightarrow	\exists	C	(C	\in	F	\wedge	x	\in	C))\).The	union	axiom	states	that,	for	any	set	\(F\),	there	is	a	set	\(U\)	whose	elements	are	precisely	those	elements	that	belong	to	an	element	of	\(F\),	that	is,	\(x	\in	U\)	if	and	only	if	\(x	\in	A\)	for	some	\(A	\in	F\).	The
extensionality	axiom	implies	that	the	set	\(U\)	is	unique;	it	is	often	denoted	by	\(\bigcup	F\).	For	example,	consider	the	set	\(\{A,B\}\).	Then\(\bigcup	\{A,B\}	=	\{x	:	x\)	belongs	to	a	member	of	\(\{A,B\}\}	=	\{x	:	x	\in	A\)	or	\(x	\in	B\}	=	A	\cup	B\).For	another	example,	let	\(F	=	\{	\{a,b,c\},\{e,f\},\{e,c,d\}	\}\).	Then	\(\bigcup	F	=	\{a,b,c,d,e,f\}\).	Power	Set
Axiom.	For	every	set	\(A\),	there	exists	a	set	\(P\)	that	consists	of	all	the	sets	that	are	subsets	of	\(A\).\(\forall	A	\exists	P	\forall	x	(	x	\in	P	\leftrightarrow	\forall	y(	y	\in	x	\rightarrow	y	\in	A))\).The	power	set	axiom	states	that,	for	any	set	\(A\),	there	is	a	set,	which	we	denote	by	\(\wp(A)\),	such	that	for	any	set	\(B\),	\(B	\in	\wp(A)\)	if	and	only	if	\(B	\subseteq
A\).	Infinity	Axiom.	There	is	a	set	\(I\)	that	contains	the	empty	set	as	an	element	and	whenever	\(x	\in	I\),	then	\(x	\cup	\{x\}	\in	I\).\(\exists	I	(	\varnothing	\in	I	\wedge	\forall	x	(x	\in	I	\rightarrow	x	\cup	\{	x	\}	\in	I))\).The	infinity	axiom	ensures	the	existence	of	at	least	one	infinite	set.	For	any	set	\(x\),	the	successor	of	\(x\)	is	defined	to	be	the	set	\(x^{+}
=	x	\cup	\{x\}\).	Thus,	the	axiom	of	infinity	asserts	that	there	is	a	set	\(I\)	such	that	\(\varnothing	\in	I\)	and	if	\(x	\in	I\),	then	\(x^{+}	\in	I\).	Note	that	\(\varnothing^{+}	=	\{\varnothing\}\),	and	that	\(\{\varnothing\}^{+}	=	\{\varnothing,\{\varnothing\}\}\).	It	follows	that	the	set	\(I\)	contains	each	of	the	sets\(\varnothing;	\{\varnothing\};	\
{\varnothing,	\{\varnothing	\}\};	\{\varnothing,	\{\varnothing,	\{\varnothing	\}\}\};	\ldots\).One	can	show	that	any	two	of	the	sets	in	the	above	list	(separated	by	a	semi-colon)	are	distinct.	Hence,	the	set	\(I\)	contains	an	infinite	number	of	elements;	in	other	words,	\(I\)	is	an	infinite	set.	So,	the	infinity	axiom	simply	states	that	infinite	sets	exist	and	are
legitimate	mathematical	objects.	The	infinity	axiom	is	a	key	tool	that	is	used	to	develop	the	set	of	natural	numbers	\(\mathbb{N}\)	and	to	prove	that	\(\mathbb{N}\)	is	well-ordered,	that	is,	every	nonempty	set	of	natural	numbers	has	a	least	element.	Replacement	Axiom.	Let	\(\psi	(x,	y)\)	be	a	formula.	For	every	set	\(A\),	if	for	each	\(x	\in	A\)	there	is	a
unique	\(y\)	such	that	\(\psi	(x,	y)\),	then	there	is	a	set	\(S\)	that	consists	of	all	of	the	elements	\(y\)	such	that	\(\psi	(x,	y)\)	for	some	\(x	\in	A\).	(Below,	\(\exists\)!	is	the	uniqueness	quantifier.)\(\forall	A	(\forall	x	(	x	\in	A	\rightarrow	\exists	!	y	\psi	(x,y))	\rightarrow	\exists	S	\forall	y(	y	\in	S	\leftrightarrow	\exists	x	(x	\in	A	\wedge	\psi(x,	y))))\).(The	variable	\
(S\)	is	assumed	not	to	appear	in	the	formula	\(\psi	(x,	y)\).)	The	replacement	axiom	states	that	for	every	set	\(A\),	if	for	each	\(x	\in	A\)	there	is	a	unique	\(y\)	such	that	\(\psi(x,y)\),	then	the	collection	\(\{y\)	:	\(\exists	x	(x	\in	A	\wedge	\psi(x,y))\}\)	is	a	set;	that	is,	a	functional	image	of	a	set,	is	a	set.	The	replacement	axiom	is	a	special	form	of	Cantors
Comprehension	Principle	that	plays	a	critical	role	in	modern	set	theory.	However,	the	replacement	axiom	does	not	lead	to	the	contradictions	that	follow	from	the	Comprehension	Principle.	Like	the	subset	axiom,	the	replacement	axiom	is	an	axiom	schema.	Accordingly,	there	are	infinitely	many	Zermelo-Fraenkel	axioms.	Regularity	Axiom.	Each
nonempty	set	\(A\)	contains	an	element	that	is	disjoint	from	\(A\).\(\forall	A	(	A	eq	\varnothing	\rightarrow	\exists	x	(	x	\in	A	\wedge	eg	\exists	y	(	y	\in	x	\wedge	y	\in	A)))\).The	regularity	axiom,	also	known	as	the	axiom	of	foundation,	states	that,	for	any	nonempty	set	\(A\),	there	is	a	set	\(x	\in	A\)	such	that	\(A	\cap	x	=	\varnothing\).	The	regularity	axiom
rules	out	the	possibility	of	a	set	belonging	to	itself.	In	standard	mathematics,	there	are	no	sets	that	are	members	of	themselves.	For	example,	the	set	of	natural	numbers	is	not	a	natural	number.	The	regularity	axiom	eliminates	collections	that	are	not	relevant	for	standard	mathematics.	The	regularity	and	pairing	axioms	imply	that	if	\(a	\in	b\),	then	\(b
otin	a\).	To	see	this,	suppose	that	\(a	\in	b\).	Then	it	follows,	from	regularity,	that	\(a	\cap	\{a,b\}	=	\varnothing\).	So	\(b	otin	a\).The	Zermelo-Fraenkel	axioms	are	now	the	most	widely	accepted	answer	to	the	question:	How	can	one	correctly	construct	a	set?	Of	course,	these	axioms	are	more	restrictive	than	Cantors	Comprehension	Principle;	however,
no	one,	in	over	100	years,	has	been	able	to	derive	a	contradiction	from	these	axioms.	Moreover,	all	of	the	classic	results	(excluding	the	paradoxes)	that	were	derived	using	Cantors	nave	set	theory	can	be	derived	from	the	Zermelo-Fraenkel	axioms.It	is	a	remarkable	fact	that	essentially	all	mathematical	objects	can	be	defined	as	sets	within	Zermelo-
Fraenkel	set	theory.	For	example,	functions,	relations,	the	natural	numbers,	and	the	real	numbers	can	be	defined	within	Zermelo-Fraenkel	set	theory.	Hence,	effectively	all	theorems	of	mathematics	can	be	considered	as	statements	about	sets	and	proven	from	the	Zermelo-Fraenkel	axioms.b.	ClassesThe	argument	used	in	Russells	Paradox	can	be
applied	to	prove,	in	ZF,	that	there	is	no	set	that	contains	all	sets	(as	elements).	As	every	set	is	equal	to	itself,	the	collection	\(\{x\)	:	\(x	=	x\}\)	contains	every	set,	but	this	collection	is	not	a	set.	Thus,	given	a	formula	\(\varphi(x)\),	one	cannot	necessarily	conclude	that	the	collection	\(\{x	:	\varphi(x)\}\)	is	a	set.	However,	in	set	theory,	it	is	convenient	to	be
able	to	discuss	such	collections.	They	cannot	be	called	sets.	Instead,	a	collection	of	the	form	\(\{x\)	:	\(\varphi(x)\}\)	is	called	a	class.	The	collection	\(\{x	:	x	=	x\}\)	is	a	class	that	is	not	a	set;	for	this	reason,	it	is	called	a	proper	class.When	can	one	prove	that	a	class	is	a	set?	Let	us	say	that	a	class	\(\{x	:	\varphi(x)\}\)	is	bounded	if	and	only	if	there	is	a	set
\(A\)	such	that	for	all	\(x\),	if	\(\varphi(x)\),	then	\(x	\in	A\).	Using	the	subset	axiom,	one	can	prove	that	a	bounded	class	is	a	set.	It	follows	that	the	class	\(\{x	:	x	=	x\}\)	is	not	bounded.In	the	Zermelo-Fraenkel	axioms,	there	is	no	explicit	mention	of	classes.	However,	there	are	alternative	axiomatizations	of	set	theory	that	extend	ZF	by	including	classes	as
objects	in	the	language,	that	is,	these	axiom	systems	give	classes	a	formal	state	of	existence.	The	most	common	such	axiomatic	treatment	of	classes	is	denoted	by	NBG	(von	NeumannBernaysGdel).	The	NBG	system	uses	a	formal	language	that	has	two	different	types	of	variables:	capital	letters	denote	classes	and	lowercase	letters	denote	sets.	In
addition,	classes	can	contain	only	sets	as	elements.	So,	a	class	that	is	not	a	set	cannot	belong	to	a	class.	Thus,	a	class	\(X\)	is	a	set	if	and	only	if	\(\exists	Y	(X	\in	Y)\).	In	the	NBG	system,	sets	satisfy	all	of	the	ZF	axioms,	and	the	intersection	of	a	class	with	a	set	is	a	set,	that	is,	\(X	\cap	y\)	is	a	set.	The	NBG	system	also	has	the	class	comprehension	axiom:\
(\exists	X	\forall	y	(y	\in	X	\leftrightarrow	\varphi	(y))\)where	the	formula	\(\varphi(y)\)	can	contain	set	parameters	and/or	class	parameters	(with	other	restrictions).	Thus,	the	class	comprehension	axiom	asserts	that	\(\{x	:	\varphi(x)\}\)	is	a	class.The	NBG	system	is	a	conservative	extension	of	ZF;	that	is,	a	sentence	with	only	lowercase	(set)	variables	is
provable	in	NBG	if	and	only	if	it	is	provable	in	ZF.	The	Zermelo-Fraenkel	system	has	a	clear	advantage	over	NBG,	namely,	the	simplicity	of	working	with	only	one	type	of	object	(sets)	rather	than	two	types	of	objects	(sets	and	classes).	The	Zermelo-Fraenkel	axiomatic	system	is	the	standard	system	of	axioms	for	modern	set	theory.4.	Cantors	Well-
Ordering	PrincipleAs	proposed	by	Cantor,	two	sets	\(A\)	and	\(B\)	have	the	same	cardinality	if	and	only	if	there	is	a	bijection	\(f\):	\(A	\rightarrow	B\).	When	\(A\)	is	a	finite	set,	there	is	a	unique	natural	number,	denoted	by	|\(A\)|,	that	identifies	the	number	of	elements	in	\(A\).	In	this	case,	we	say	that	|\(A\)|	is	the	cardinality	of	\(A\).	For	example,	if	\(A	=	\
{3,5,7,2\}\),	then	|\(A\)|	\(=	4\).	Clearly,	the	cardinality	of	a	finite	set	identifies	the	number	of	elements	that	are	in	the	set.	Moreover,	if	\(A\)	and	\(B\)	are	both	finite	sets,	then	one	can	prove	that|\(A\)|	=	|\(B\)|	if	and	only	if	there	exists	a	bijection	\(f\):	\(A	\rightarrow	B\).	With	this	understanding,	Cantor	asked	the	following	question:Are	there	values	that
can	represent	the	size	of	infinite	sets	and	satisfy	(\(\Delta\))?In	other	words,	given	two	infinite	sets	\(A\)	and	\(B\),	can	one	assign	values	|\(A\)|	and	|\(B\)|	such	that|\(A\)|	=	|\(B\)|	if	and	only	if	there	exists	a	bijection	\(f\):	\(A	\rightarrow	B\)?Cantor	answered	this	question,	in	the	affirmative,	by	developing	the	transfinite	ordinal	numbers,	which	are	infinite
numbers	in	the	sense	that	they	are	larger	than	all	of	the	natural	numbers,	and	are	well-ordered	just	like	the	natural	numbers.	Cantor	believed	that	each	infinite	set	can	be	assigned	a	specific	ordinal	number	and	that	this	ordinal	number	would	measure	the	size	of	the	set.	Cantor	realized	that,	in	order	to	successfully	apply	his	theory	of	ordinal	numbers,
he	needed	an	additional	principle.	In	1883,	he	proposed	the	following	principle.Well-Ordering	Principle:	It	is	always	possible	to	bring	any	well-defined	set	into	the	form	of	a	well-ordered	set.A	relation	\(\leq\)	on	a	set	\(X\)	is	a	well-ordering	of	\(X\)	if	and	only	if	it	is	a	total	ordering	in	which	every	non-empty	subset	of	\(X\)	has	a	least	element,	where	it	is
assumed	that	the	relation	\(\leq\)	does	not	apply	to	any	elements	that	are	not	in	\(X\).	If	a	set	can	be	well-ordered,	then	one	can	generalize	the	concepts	of	induction	and	recursion,	similar	to	mathematical	induction,	on	the	elements	of	the	set.	Given	any	infinite	set,	Cantor	used	the	well-ordering	principle	to	identify	an	ordinal	number	that	measures	the
size	of	the	set.	Such	an	ordinal	is	called	a	cardinal	number.a.	Ordinal	NumbersThe	natural	numbers	are	often	used	for	two	purposes:	to	indicate	the	position	of	an	element	in	a	sequence	and	to	identify	the	size	of	a	finite	set.	In	other	words,	a	natural	number	can	be	used	to	identify	a	position	(first,	second,	third,	)	and	it	can	be	used	to	identify	a	size
(one,	two,	three,	).	Cantor	extended	the	natural	numbers	by	introducing	the	concepts	of	transfinite	position	and	transfinite	size.	Suppose	that	we	want	to	count	the	number	of	real	numbers.	As	noted	in	Section	1,	Cantor	proved	that	the	set	of	real	numbers	is	uncountable.	Thus,	if	we	attempted	to	assign	each	real	number	to	exactly	one	of	the	natural
numbers	\(0,	1,	2,	3,	\ldots,\)	then	we	would	not	have	enough	natural	numbers	to	complete	this	task.	However,	suppose	that	we	add	some	new	numbers,	called	transfinite	ordinals,	to	our	stock	of	numbers.	Clearly,	we	need	an	ordinal	that	will	identify	the	first	position	that	occurs	after	all	of	the	natural	numbers.	Cantor	denoted	this	ordinal	by	the	Greek
letter	\(\omega\).	That	is,	Cantor	proposed	the	following	position	sequence\(0,	1,	2,	3,	4,	\ldots,	\omega\).	Observe	the	following:By	starting	with	\(0\)	and	repeatedly	adding	\(1\),	we	obtain	all	of	the	natural	numbers.Every	natural	number	greater	than	\(0\)	has	an	immediate	predecessor;	for	example,	\(5\)	has	\(4\)	as	its	immediate	predecessor.By
contrast,	the	ordinal	number	\(\omega\)	cannot	be	obtained	by	repeatedly	adding	\(1\)	to	\(0\)	and	it	does	not	have	an	immediate	predecessor.	For	these	reasons,	we	say	that	\(\omega\)	is	a	limit	ordinal.We	can	continue	the	sequence	(1)	by	repeatedly	adding	\(\)	to	\(\omega\).	By	doing	so,	we	obtain	the	following	position	sequence:\(0,	1,	2,	3,	4,	\ldots,
\omega,	\omega+1,	\omega+2,	\omega+3,	\ldots\)	The	process	for	constructing	(1)	and	(2)	can	be	repeated	endlessly.	In	this	way,	we	obtain	the	ordered	sequence	of	all	of	the	ordinals:\(0,	1,	2,	3,	4,	\ldots,	\omega,	\omega+1,	\omega+2,	\ldots	,\omega+\omega,(\omega+\omega)+1,(\omega+\omega)+2,	\ldots\)	where	\(\omega+\omega\)	is	a	limit
ordinal	which	is	usually	represented	by	\(2	\cdot	\omega\).	An	ordinal	of	the	form	\(\alpha+1\)	is	called	a	successor	ordinal.	An	ordinal	\(\delta\)	>	\(0\)	that	is	not	a	successor	ordinal	is	called	a	limit	ordinal.	Cantor	used	the	ordinals	to	measure	the	length	of	a	well-ordered	set.The	natural	numbers	\(0,	1,	2,	3,	4,	\ldots\)	are	sometimes	called	finite
ordinals.	Every	nonempty	subset	of	the	natural	numbers	has	a	least	element.	Similarly,	every	nonempty	set	of	ordinals	has	a	least	element	with	respect	to	the	ordering	in	(3).	The	ordinal	numbers	are	a	generalized	extension	of	the	natural	numbers.	One	can	define	the	operations	of	addition,	multiplication,	and	exponentiation	on	the	ordinal	numbers.
These	operations	satisfy	some	(but	not	all)	of	the	arithmetic	properties	that	hold	on	the	natural	numbers,	for	example,	addition	is	associative	(Cunningham	2016).The	set	of	predecessors	of	an	ordinal	is	the	set	of	all	of	the	ordinals	that	come	before	it	in	the	list	(3);	for	example,	the	set	of	predecessors	of	\(\omega\)	and	\(\omega+1\)	are	the	respective
sets\(\mathbb{N}	=	\{0,	1,	2,	3,	4,	\ldots\}\),	\(N	=	\{0,	1,	2,	3,	4,	\ldots	,	\omega	\}\).	The	ordinals	\(\omega\)	and	\(\omega+1\)	represent	different	positions	in	the	list	(3);	but,	the	sets	\(\mathbb{N}\)	and	\(N\)	in	(4)	have	the	same	cardinality.	Note	that	the	cardinality	of	\(\mathbb{N}\)	is	larger	than	any	finite	set,	that	is,	for	any	natural	number	\(n\),
the	set	\(\mathbb{N}\)	has	cardinality	larger	than	the	set	\(\{0,	1,	2,	\ldots,	n\}\).	For	this	reason,	we	say	that	\(\omega\)	is	a	cardinal	number.For	any	two	ordinals	\(\alpha\)	and	\(\beta\),	we	say	that	\(\alpha\)	<	\(\beta\)	if	and	only	if	\(\alpha\)	appears	before	\(\beta\)	in	the	list	(3).	For	each	ordinal	\(\gamma\),	let	Pred(\(\gamma\))	=	\(\{\alpha	:	\alpha\)
<	\(\gamma\}\)	be	the	set	of	predecessors	of	\(\gamma\).	One	can	prove,	in	ZF,	that	Pred(\(\gamma\))	is	a	set.	In	contemporary	set	theory	one	usually	defines	the	ordinals	so	that,	for	each	ordinal	\(\gamma\),	\(\gamma\)	=	Pred\((\gamma)\);	that	is,	each	ordinal	is	defined	to	be	the	set	of	its	predecessors.	Specifically,	a	set	\(\gamma\)	is	said	to	be	an
ordinal	if	and	only	if	\(\gamma\)	is	well-ordered	by	the	membership	relation	and	is	transitive,	that	is,	every	element	in	\(\gamma\)	is	a	subset	of	\(\gamma\).	Thus,	if	\(\alpha\)	<	\(\beta\),	then	\(\alpha	\in	\beta\)	and	\(\alpha	\subseteq	\beta\).	For	example,	\(\omega	=	\{0,	1,	2,	3,	4,	\ldots\}\)	is	an	ordinal	if	the	integers	(the	finite	ordinals)	are	defined	as
follows:\(0	=	\varnothing\),\(1	=	\{0\}\),\(2	=	\{0,1\}\),\(3	=	\{0,1,2\}\),\(4	=	\{0,1,2,3\}\).This	approach	is	due	to	Von	Neumann	(Kunen	2009),	and	such	ordinals	can	be	called	Von	Neumann	ordinals.	The	collection	of	all	ordinals	is	a	proper	class	(see	Cunningham	2016).b.	Cardinal	NumbersAn	ordinal	number	\(\kappa\)	is	said	to	be	a	cardinal	if	and
only	if,	for	all	\(\alpha\)	<	\(\kappa\),	the	set	Pred(\(\alpha\))	has	smaller	cardinality	than	Pred(\(\kappa\)).	It	follows	that	the	natural	numbers	are	all	cardinals.	As	noted	above,	\(\omega\)	is	the	first	transfinite	cardinal,	which	is	often	denoted	by	\(\aleph_{0}\).	The	next	transfinite	cardinal,	after	\(\aleph_{0}\),	is	designated	by	\(\aleph_{1}\).	This	process
can	be	continued	to	produce	the	following	sequence	of	finite	and	transfinite	cardinals:\(0,	1,	2,	3,	4,	\ldots,	\aleph_{0},	\aleph_{1},	\ldots,	\aleph_{\omega},	\aleph_{\omega+1},	\ldots,	\aleph_{2	\cdot	\omega},	\ldots,	\aleph_{\omega	\cdot	\omega},	\ldots\)	where	the	transfinite	cardinal	numbers	in	(5)	are	indexed	by	the	ordinal	numbers.	Thus,	the
collection	of	all	the	cardinal	numbers	is	a	proper	class.	A	cardinal	\(\aleph_{\beta}\)	is	called	a	successor	cardinal	if	and	only	if	\(\beta\)	is	a	successor	ordinal;	otherwise,	it	is	called	a	limit	cardinal.	One	can	prove,	in	ZF,	that,	for	every	cardinal	\(\kappa\),	there	is	an	ordinal	\(\alpha\)	such	that	\(\kappa	=	\aleph_{\alpha}\)	(Cunningham	2016).	Thus,
every	cardinal	appears	on	the	list	(5).	One	can	define	the	operations	of	addition,	multiplication,	and	exponentiation	on	the	cardinals	(exponentiation	requires	the	well-ordering	principle).	These	particular	operations	are	not	the	same	as	the	corresponding	operations	on	the	ordinal	numbers	(Cunningham	2016).Cantor	used	the	cardinal	numbers	to
measure	the	size	of	sets.	The	well-ordering	principle	implies	that	every	set	A	can	be	assigned	a	(unique)	cardinal	number	that	measures	its	size.	This	cardinal	number	is	usually	denoted	by	|\(A\)|,	and	is	called	the	cardinality	of	\(A\).	Cantors	Theorem	implies	that,	for	any	set	\(A\),	|\(A\)|	<	|\(\wp(A)\)|.	The	operation	of	cardinal	exponentiation	allowed
Cantor	to	prove	that	the	cardinality	of	\(\mathbb{R}\),	the	set	of	real	numbers,	is	equal	to	\(2^{\aleph_{0}	}\),	that	is,	|\(\mathbb{R}\)|	=	\(2^{\aleph_{0}}\).	Since	\(\aleph_{1}\)	is	the	first	cardinal	greater	than	\(\aleph_{0}\),	Cantor	was	able	to	express	the	Continuum	Hypothesis	in	terms	of	the	equation	\(2^{\aleph_{0}}	=	\aleph_{1}\).	Moreover,
assuming	the	well-ordering	principle,	one	can	conclude	that	a	set	\(A\)	is	countable	if	and	only	if	|\(A\)|	\(\leq	\aleph_{0}\)	and	that	a	set	\(B\)	is	uncountable	if	and	only	if	\(\aleph_{1}	\leq\)	|\(B\)|.Infinite	cardinals	come	in	two	distinct	forms:	regular	or	singular.	An	infinite	cardinal	\(\kappa\)	is	said	to	be	a	regular	cardinal	if	and	only	if	\(\kappa\)	is	not
the	union	of	a	set	consisting	of	less	than	\(\kappa\)	many	smaller	cardinals.	Thus,	if	\(\kappa\)	is	a	regular	cardinal,	\(S\)	is	a	set	of	cardinals	smaller	than	\(\kappa\),	and	|\(S\)|	<	\(\kappa\),	then	\(\kappa	eq	\bigcup	S\).	Assuming	the	well-ordering	principle,	it	follows	that	each	successor	cardinal	is	a	regular	cardinal.	When	a	cardinal	is	not	regular,	it	is
called	a	singular	cardinal.	One	can	show	that	an	infinite	cardinal	\(\kappa\)	is	singular	if	and	only	if	there	exists	an	ordinal	\(\beta\)	<	\(\kappa\)	and	a	function	\(f\):	Pred(\(\beta\))	Pred(\(\kappa\))	such	that	for	all	\(\gamma\)	<	\(\kappa\)	there	is	an	ordinal	\(\alpha\)	<	\(\beta\)	such	that	\(\gamma\)	<	\(f(\alpha)\).	It	follows	that	\(\aleph_{\omega}\)	is	a
singular	cardinal.5.	The	Axiom	of	ChoiceAt	the	third	International	Congress	of	Mathematicians	at	Heidelberg	in	1904,	Julius	Knig	submitted	a	proof	that	the	well-ordering	principle	is	false;	in	particular,	he	presented	an	argument	showing	the	set	of	real	numbers	cannot	be	well-ordered.	On	the	next	day,	Ernst	Zermelo	identified	an	error	in	Knigs
purported	proof.	Shortly	after	the	Heidelberg	congress,	Zermelo	(Moore	2012)	discovered	a	proof	of	the	following	theorem,	which	implies	that	the	error	found	in	Knigs	proof	cannot	be	removed.Well-Ordering	Theorem:	Every	set	can	be	well-orderedIn	his	clever	proof	of	the	well-ordering	theorem,	Zermelo	formulated	and	applied	the	following
principle,	which	he	was	the	first	to	identify.Axiom	of	Choice	(AC).	Let	\(T\)	be	a	set	of	nonempty	sets.	Then	there	is	a	function	\(F\)	such	that,	for	each	set	\(A\)	in	\(T\),	\(F(A)	\in	A\).The	function	\(F\)	mentioned	in	AC	is	called	a	choice	function	for	the	set	\(T\).	Informally,	the	axiom	of	choice	asserts	that,	for	any	collection	of	nonempty	sets,	it	is	possible
to	uniformly	choose	exactly	one	element	from	each	set	in	the	collection.	When	\(T\)	is	a	finite	set,	one	can	prove,	in	ZF,	that	there	exists	a	choice	function.	Today,	mathematicians	use	the	axiom	of	choice	when	the	set	\(T\)	is	infinite	and	it	is	not	clear	how	to	define	or	construct	a	desired	choice	function.Zermelo	applied	the	axiom	of	choice	to	establish
the	well-ordering	theorem.	The	well-ordering	theorem	validates	both	Cantors	well-ordering	principle	and	that	every	set	can	be	assigned	a	cardinal	number	that	measures	its	size.a.	On	Zermelos	Proof	of	the	Well-Ordering	PrincipleZermelos	proof	of	the	well-ordering	theorem	is	the	first	mathematical	argument	that	explicitly	invokes	the	axiom	of
choice.	As	a	result,	the	proof	can	be	viewed	as	an	important	moment	in	the	development	of	modern	set	theory.	For	this	reason,	we	now	present	a	summary	of	this	proof.	Let	\(A\)	be	a	nonempty	set	and	let	\(T\)	be	the	set	of	all	nonempty	subsets	of	\(A\);	that	is,	let\(T	=	\{	X	\in	\wp	(A)\)	:	\(X	eq	\varnothing	\}\).Let	\(\gamma\)	be	a	choice	function	for	\
(T\).	Call	a	set	\(X	\in	T\)	a	\(\gamma\)-set	if	and	only	if	there	is	a	well-ordering	\(\leq\)	of	\(X\)	such	that,	for	each	\(a	\in	X\),\(\gamma(\{z	\in	A\)	\(z\)	\(a\})	=a	\).Thus,	each	element	\(a	\in	X\)	is	the	element	that	the	choice	function	\(\gamma\)	selects	from	the	set	of	all	elements	in	\(A\)	that	do	not	(strictly)	precede	\(a\)	in	the	ordering	\(\leq\).	For	example,
if	\(w	=	\gamma(A)\),	then	one	can	show	that	\(\{w\}\)	is	a	\(\gamma\)-set.	Thus,	\(\gamma\)-sets	exist.	Let	\(X\)	be	a	\(\gamma\)-set	with	well	ordering	\(\leq\)	and	let	\(Y\)	be	a	\(\gamma\)-set	with	well-ordering	\(\leq\).	In	his	proof,	Zermelo	showed	that	either	\(X	\subseteq	Y\)	and	\(\leq\)	continues	\(\leq\)	or	\(Y	\subseteq	X\)	and	\(\leq\)	continues	\(\leq\),
where	we	say	that	\(\leq\)	continues	\(\leq\)	when	the	order	\(\leq\)	only	adds	new	elements	that	are	greater	than	all	of	the	elements	ordered	by	\(\leq\).	Zermelo	also	showed	that	the	union	of	all	of	the	\(\gamma\)-sets	is	a	\(\gamma\)-set	and	that	this	union	equals	\(A\).	Therefore,	\(A\)	can	be	well-ordered.Essentially,	the	axiom	of	choice	states	that	one
can	make	infinitely	many	arbitrary	choices.	As	noted	above,	Cantors	acceptance	of	infinite	sets	led	to	a	dispute	among	some	of	Cantors	contemporaries.	Similarly,	Zermelos	axiom	of	choice	incited	further	controversy	concerning	the	infinite.	The	main	objection	to	the	axiom	of	choice	was	the	obvious	one:	How	can	the	existence	of	a	choice	function	be
justified	when	such	a	function	cannot	be	defined	or	explicitly	constructed?	Surprisingly,	many	of	the	axioms	severest	critics	had	unwittingly	applied	the	axiom	in	their	own	work.	In	the	decades	following	its	introduction,	the	axiom	of	choice	gained	acceptance	among	most	mathematicians;	in	part,	this	was	because	the	axiom	of	choice	is	a	very	useful
principle	whose	deductive	strength	is	required	to	prove	many	important	mathematical	theorems	(Moore	2012).	Moreover,	the	axiom	of	choice	is	equivalent	to	a	number	of	seemingly	unrelated	principles	in	mathematics.	For	example,	in	ZF,	the	axiom	of	choice	is	equivalent	to	Zorns	lemma,	the	well-ordering	theorem,	and	the	comparability	theorem
(see	Cunningham	2016).The	Zermelo-Fraenkel	system	of	axioms	is	denoted	by	ZF	and	the	axiom	of	choice	is	abbreviated	by	AC.	The	axiom	of	choice	is	not	one	of	the	axioms	in	ZF.	The	result	of	adding	the	axiom	of	choice	to	the	system	ZF	is	denoted	by	ZFC.There	were	many	unsuccessful	attempts	to	prove	the	axiom	of	choice	assuming	only	the	axioms
in	ZF.	As	a	result,	mathematicians	began	to	doubt	the	possibility	of	proving	the	axiom	of	choice	from	the	axioms	in	ZF	and,	eventually,	it	was	shown	that	such	a	proof	does	not	exist.	The	combined	work	of	Kurt	Gdel,	in	1940,	and	Paul	Cohen,	in	1963,	confirmed	that	the	axiom	of	choice	is	independent	of	the	Zermelo-Fraenkel	axioms,	that	is,	AC	cannot
be	proven	or	refuted	using	just	the	axioms	in	ZF.	Nevertheless,	the	axiom	of	choice	is	a	powerful	tool	in	mathematics	and	there	are	many	significant	theorems	that	cannot	be	established	without	it.	Consequently,	mathematicians	typically	assume	the	axiom	of	choice	and	often	cite	it	when	they	use	it	in	a	proof.b.	Banach-Tarski	ParadoxSet	theory
frequently	deals	with	infinite	sets.	Moreover,	as	we	have	seen,	there	are	times	when	infinite	sets	have	properties	that	are	unlike	those	of	finite	sets.	Such	properties	of	infinite	sets	can	appear	to	be	counter-intuitive	or	paradoxical,	because	they	conflict	with	the	behavior	of	finite	sets	or	with	our	limited	intuition.	Cantor	proved	a	theorem	that	illustrates
this	fact.	Let	\(I\)	denote	the	unit	interval	\(\lbrack	0,1	\rbrack\),	that	is,	the	set	of	all	real	numbers	\(x\)	such	that	\(0	\leq	x	\leq	1\).	Let	\(S\)	denote	the	unit	square	in	the	plane,	that	is,	the	set	of	all	ordered	pairs	\((x,y)\)	such	that	such	that	\(0	\leq	x	\leq	1\)	and	\(0	\leq	y	\leq	1\).	The	sets	\(I\)	and	\(S\)	appear	in	the	following	figure:Cantor	initially
believed	that	the	set	of	points	in	the	two-dimensional	square	\(S\)	must	have	cardinality	much	larger	than	the	set	of	points	in	the	one-dimensional	interval	\(I\).	Then	he	discovered	a	proof	showing	that	his	initial	intuition	was	wrong.	Cantors	theorem	below,	which	can	be	proven	without	the	axiom	of	choice,	shows	the	sets	\(I\)	and	\(S\)	have	the	same
cardinality.Theorem	(Cantor).	There	exists	a	bijection	\(f\):	\(I	\rightarrow	S\).One	can	use	the	bijection	\(f\):	\(I	\rightarrow	S\)	to	proclaim	that	one	can,	theoretically,	disassemble	all	of	the	points	in	the	interval	\(I\)	and	then	reassemble	these	points	to	obtain	the	unit	square	\(S\).	This,	of	course,	is	counter-intuitive,	as	we	know	that	one	cannot	cut-up	a
1-foot	piece	of	thread	and	then	put	the	pieces	together	to	obtain	a	square-foot	piece	of	fabric.	Thus,	there	are	infinite	abstract	objects	that	do	not	behave	in	the	same	way	as	finite	concrete	objects.We	now	present	a	theorem	due	to	Stefan	Banach	and	Alfred	Tarski	(1924).	The	proof	of	this	theorem	uses	the	axiom	of	choice,	in	an	essential	manner,	to
prove	another	counter-intuitive	result.	Some	have	claimed	that	this	theorem	thus	refutes	the	axiom	of	choice.	First,	we	identify	some	terminology.	In	three-dimensional	space,	a	unit	ball	is	a	set	of	points	of	distance	less	than	or	equal	to	\(1\)	from	a	fixed	central	point.Theorem	(Banach,	Tarski).	A	unit	ball	in	three-dimensional	space	can	be	split	into	five
pieces	that	can	be	rigidly	moved,	rotated,	and	put	back	together	to	form	two	unit	balls.The	BanachTarski	Theorem	is	often	referred	to	as	a	paradox	because	it	is	counter-intuitive;	for	example,	the	theorem	implies	that,	theoretically,	one	can	split	a	solid	glass	ball	into	five	pieces	and	then	use	the	pieces	to	create	two	new	glass	balls	of	the	same	size	as
the	original.	However,	in	the	proof	of	the	theorem,	the	five	pieces	that	are	formed	are	not	solids	that	have	a	measurable	volume;	they	are	five	complex	infinite	sets	of	points.	We	repeat:	there	are	infinite	abstract	objects	that	do	not	behave	in	the	same	way	as	finite	concrete	objects.The	conclusion	of	the	BanachTarski	Theorem	does	not	refute	the	axiom
of	choice,	and	Cantors	above	theorem	does	not	render	the	axioms	of	set	theory	false.	Ever	since	the	ancient	Greeks,	there	have	been	results	in	mathematics	that	were	once	viewed	as	being	counter-intuitive.	Such	results	eventually	become	better	understood	and,	as	a	result,	become	more	intuitive	themselves.6.	The	Cumulative	HierarchyZermelos
1904	proof	of	the	well-ordering	theorem	resembles	von	Neumanns	1923	proof	of	the	transfinite	recursion	theorem,	a	powerful	tool	in	set	theory.	A	formula	\(\varphi(g,u)\)	is	said	to	be	functional	if	and	only	if	\(\forall	g	\exists	!	u	\varphi	(g,u)\);	that	is,	for	all	\(g\),	there	is	a	unique	\(u\)	such	that	\(\varphi(g,u)\).	Given	a	functional	formula,	\
(\varphi(g,u)\),	consider	the	class	of	ordered	pairs\(F	=	\{(g,u)\)	\(\varphi(g,u)\}\).Since	\(\varphi(g,u)\)	is	functional,	one	can	view	\(F\)	as	a	class	function	(that	is,	a	functional	class),	and	thus,	\(F(x)\)	is	a	set	whenever	\(x\)	is	a	set.	Let	\(F\)|\(A\)	denote	the	function	obtained	by	restricting	the	domain	of	\(F\)	to	the	set	\(A\).	The	replacement	axiom	implies
that	\(F\)|\(A\)	is	a	set	whenever	\(A\)	is	a	set.Transfinite	Recursion	Theorem:	Let	\(\varphi(g,u)\)	be	a	functional	formula.	Then	there	is	a	class	function	\(H\)	such	that,	for	all	ordinals	\(\beta\),	\(\varphi(H\)|\(\beta,H(\beta))\).The	transfinite	recursion	theorem	is	used	to	define	what	is	commonly	known	as	the	cumulative	hierarchy	of	sets	and	usually
denoted	by	\(\{V_{\beta}	:	\beta	\text{	is	an	ordinal}\}\),	which	satisfies	(see	figure	below)\(V_{0}	=	\varnothing\),\(V_{\gamma	+	1}	=	\wp	(V_{\gamma})\),	for	any	ordinal	\(\gamma\),\(V_{\beta}	=	\bigcup	\{V_{\alpha}\)	:	\(\alpha	\)	<	\(\beta\}\),	for	any	limit	ordinal	\(\beta\).One	obtains	\(\{V_{\beta}	:	\beta	\text{	is	an	ordinal}\}\)	by	repeatedly
applying	the	power	set	operation	at	successor	ordinals	and	by	taking	the	union	of	all	the	previous	sets	at	limit	ordinals.	In	particular,	\(V_{0}	=	\varnothing\)	and\(V_{1}	=	\wp	(V_{0})=	\{	\varnothing,\{	\varnothing	\}	\},	\ldots	,	V_{\omega}	=	\bigcup	\{	V_{n}\)	:	\(n\)	<	\(\omega\},	\ldots\)The	regularity	axiom	implies	that	for	every	set	\(x\),	there
exists	an	ordinal	\(\alpha\)	such	that	\(x	\in	V_{\alpha}\).	For	this	reason,	the	proper	class	\(V	=	\bigcup	\{V_{\beta}	:	\beta	\text{	is	an	ordinal}\}\)	is	called	the	universe	of	sets.	It	follows	that	each	set	\(V_{\beta}\)	is	in	\(V\)	and	that	all	of	the	axioms	in	ZF	are	true	in	\(V\).	In	addition,	as	one	ascends	the	ordinal	spine,	one	obtains	sets	\(V_{\gamma}\)	of
ever	greater	complexity	that	become	better	and	better	approximations	to	\(V\)	(see	above	figure).	This	is	confirmed	by	the	reflection	principle	(see	below)	which,	in	essence,	asserts	that	any	statement	that	is	true	in	\(V\),	is	also	true	in	some	set	\(V_{\beta}\).Let	\(\varphi	(v_{1},	\ldots	,	v_{n})\)	be	a	formula	in	the	language	of	set	theory	with	free
variables	\(v_{1},	\ldots	,	v_{n}\).	For	any	ordinal	\(\alpha\)	and	\(x_{1},	\ldots	,	x_{n}	\in	V_{\alpha}\),	we	write\((V_{\alpha},	\in)	\vDash	\varphi	(x_{1},	\ldots	,	x_{n})\)to	mean	that	\(\varphi(x_{1},	\ldots	,x_{n})\)	is	true	in	\(V_{\alpha}\).	The	following	theorem	of	ZF,	due	to	Azriel	Levy	(Levy	1960)	and	Richard	Montague	(Montague	1961),	implies
that	any	specific	truth	that	holds	in	\(V\)	likewise	holds	in	some	initial	segment	\(V_{\beta}\)	of	\(V\);	in	fact,	it	holds	in	unboundedly	many	initial	segments.Reflection	Principle:	Let	\(\varphi(v_{1},	\ldots,	v_{n})\)	be	a	formula	and	let	\(\alpha\)	be	an	ordinal.	Then	there	is	an	ordinal	\(\beta	\)	>	\(\alpha\)	such	that,	for	all	\(x_{1},	\ldots	,	x_{n}	\in
V_{\beta},	\varphi	(x_{1},	\ldots	,x_{n})\)	is	true	in	\(V\)	if	and	only	if	\((V_{\beta},	\in)	\vDash	\varphi	(x_{1},	\ldots,	x_{n})\).As	a	corollary,	for	any	finite	number	of	formulas	that	hold	in	\(V\),	the	reflection	principle	implies	that	all	of	these	formulas	also	hold	in	some	\(V_{\beta}\).	As	noted	before,	there	are	an	infinite	number	of	axioms	in	ZF.
Montague	(Montague	1961)	used	the	reflection	principle	to	conclude	that	if	ZF	is	consistent,	then	ZF	is	not	finitely	axiomatizable.	Hence,	ZF	is	not	equivalent	to	any	finite	number	of	the	axioms	in	ZF.	This	follows	from	Gdels	second	incompleteness	theorem	(see	Kunen	2011,	page	8),	which	implies	that,	if	ZF	is	consistent,	then	one	cannot	prove,	in	ZF,
the	existence	of	a	set	model	of	ZF,	that	is,	a	set	\(M\)	such	that	\((M,\in)	\vDash	\varphi\),	for	every	axiom	\(\varphi\)	in	ZF.7.	Gdels	Constructible	UniverseAs	we	have	seen,	the	cumulative	hierarchy	of	sets	is	constructed	in	stages.	At	successor	stages,	one	adds	all	possible	subsets	of	the	previous	stage	and,	at	limit	stages,	one	takes	the	union	of	all	of	the
previously	produced	sets.	To	prove	that	the	axiom	of	choice	and	the	Continuum	Hypothesis	are	consistent	with	ZF,	Kurt	Gdel	(1938)	constructed	the	inner	model	\(L\)	of	\(V\)	commonly	known	as	the	universe	of	constructible	sets.	As	we	will	see,	\(L\)	is	a	subclass	of	\(V\).	The	idea	behind	Gdels	construction	of	\(L\)	is	to	modify	the	cumulative	hierarchy
structure	so	that	the	end	result	will	produce	a	(smaller)	class	that	satisfies	ZF.	For	any	set	\(X\),	define	\(D(X)\)	to\(D(X)	=	\{A	\subseteq	X:	A\)	is	definable	over	\((X,\in)\}\)where	\(A\)	is	definable	over	\((X,\in)\)	means	that	there	are	\(x_{1},\ldots,x_{n}\)	in	\(X\)	and	a	formula	\(\varphi(v,x_{1},\ldots,x_{n})\)	such	that,	for	all	\(a\)	in	\(X\),\(a	\in	A\)	if	and
only	if	\((X,\in)	\vDash	\varphi	(a,x_{1},\ldots,x_{n})\).One	can	show,	in	ZF,	that	\(D\)	is	a	class	function	(Moschovakis	2009,	8D).	Using	the	transfinite	recursion	theorem	and	the	definable	subset	operation	\(D\),	Gdel	defined	the	class	\(\{L_{\beta}	:	\beta	\text{	is	an	ordinal}\}\)	by	applying	the	operation	\(D\)	at	successor	ordinals	and	by	taking	the
union	of	all	of	the	previous	sets	at	limit	ordinals.	The	class	\(\{L_{\beta}	:	\beta\text{	is	an	ordinal}\}\)	satisfies	the	following	(see	figure	below):\(L_{0}	=	\varnothing\),\(L_{\gamma	+	1}	=	D(L_{\gamma})\),	for	any	ordinal	\(\gamma\),\(L_{\beta}	=	\bigcup	\{L_{\alpha}\)	:	\(\alpha	\)	<	\(\beta\}\),	for	any	limit	ordinal	\(\beta\).Consequently,	at	each
successor	stage	of	the	construction,	one	extracts	only	the	definable	subsets	of	the	previous	stage.	The	proper	class	\(L	=	\bigcup\{L_{\beta}	:	\beta\text{	is	an	ordinal}\}\)	is	called	the	universe	of	constructible	sets.Assuming	ZF,	Gdel	proved	that	\(L\)	satisfies	ZF,	the	axiom	of	choice,	and	the	Continuum	Hypothesis	(Gdel	1990).	Thus,	if	ZF	is
consistent,	then	so	is	the	theory	ZF+AC+CH.	This	result	does	not	prove	that	the	axiom	of	choice	and	the	Continuum	Hypothesis	are	true	in	\(V\),	but	it	does	show	that	one	cannot	prove,	in	ZF,	that	either	AC	or	CH	is	false.The	proper	class	\(L\)	(with	the	\(\in\)	relation	restricted	to	\(L\))	is	called	an	inner	model,	because	it	is	a	transitive	class	(a	class
that	includes	all	of	the	elements	of	its	elements),	contains	all	of	the	ordinals,	and	satisfies	all	of	the	axioms	in	ZF.Gdels	notion	of	a	constructible	set	has	led	to	interesting	and	fruitful	discoveries	in	set	theory.	By	generalizing	Gdels	definition	of	\(L\),	contemporary	set	theorists	have	defined	a	variety	of	inner	models	that	have	been	used	to	establish	new
consistency	results	(Kanamori	2003,	pp.	34-35).	Each	of	these	inner	models	contains	\(L\)	as	a	subclass,	and	to	understand	the	structure	of	these	inner	models,	one	must	be	familiar	with	the	above	definition	of	Gdels	constructible	sets.	Moreover,	a	penetrating	investigation	into	the	structure	of	\(L\)	has	led	researchers	to	discover	many	fascinating
results	about	\(L\)	and	its	relationship	to	the	universe	of	sets	\(V\)	(Jech	2003).8.	Cohens	Forcing	TechniqueIn	1963,	the	mathematician	Paul	Cohen	introduced	an	extremely	powerful	method,	called	forcing,	for	the	construction	of	models	of	Zermelo-Fraenkel	set	theory.	A	model	M	of	set	theory	is	a	transitive	collection	of	sets	in	which	the	ZF	(ZFC)
axioms	are	all	true,	denoted	by	M	\(\vDash\)	ZF	(M	\(\vDash\)	ZFC).As	discussed	in	section	7,	Gdel	showed	that	one	cannot	prove,	in	ZF,	that	either	AC	or	CH	is	false.	Cohen	used	his	forcing	technique	to	construct	a	model	of	ZFC	in	which	the	Continuum	Hypothesis	is	false.	Hence,	one	cannot	prove,	in	ZFC,	that	CH	is	true.	Thus,	if	ZFC	is	consistent,
then	CH	is	undecidable	in	ZFC.	Cohen	(1963)	also	showed	that	his	technique	of	forcing	can	be	used	to	produce	a	model	of	set	theory	in	which	ZF	holds	and	the	axiom	of	choice	is	false.	Thus,	AC	is	not	provable	in	ZF.	So,	if	ZF	is	consistent,	then	AC	is	undecidable	in	ZF.Cohens	idea	was	to	start	with	a	given	set	model	\(M\)	of	ZFC	(the	ground	model)
and	extend	it	by	adjoining	a	generic	set	\(G\)	to	\(M\)	where	\(G	otin	M\).	The	resulting	model	\(M[G]\)	(a	generic	extension	of	\(M\))	includes	\(M\),	contains	\(G\),	and	satisfies	ZFC.	Cohen	showed	how	to	find	a	set	\(G\)	so	that	CH	fails	in	\(M[G]\).	In	a	similar	manner,	Cohen	was	able	to	add	a	new	set	\(G\)	to	\(M\)	such	that	there	is	an	inner	model	of	\
(M[G]\)	in	which	ZF	holds	and	the	axiom	of	choice	is	false.	For	his	work,	Cohen	was	awarded	the	Fields	Medal	in	1966.	This	award	is	considered	to	be	the	Nobel	Prize	of	mathematics.	Gdel	stated	that	Cohens	forcing	method	was	the	greatest	advance	in	the	foundations	of	set	theory	since	its	axiomatization	(Kanamori	2003,	page	32).The	discussion	in
the	previous	paragraph	about	\(M\)	is	neither	complete	nor	entirely	correct.	In	order	to	prove	that	the	desired	generic	set	\(G\)	exists,	Cohen,	in	fact,	had	to	assume	that	\(M\)	is	a	countable	transitive	set	model	of	ZFC.	Let	us	do	the	same.	A	partial	order	is	a	pair	\((P,\leq)\)	such	that	\(P	eq	\varnothing\)	and	\(\leq\)	is	a	relation	on	\(P\)	which	is	reflexive,
antisymmetric,	and	transitive.	By	varying	\((P,\leq)\),	one	can	obtain	generic	extensions	that	satisfy	a	wide	variety	of	statements	that	are	consistent	with	ZFC.	Let	\((P,\leq)	\in	M\)	be	a	partial	order	that	is	definable	in	\(M\),	and	suppose	that,	in	\(M\),	the	definition	of	\((P,\leq)\)	and	its	properties	are	based	only	on	the	fact	that	\(M	\vDash	ZF.\)	Since	\
(M\)	is	countable,	there	exists	a	generic	set	\(G	\subseteq	P\)	(Kunen	2012,	Lemma	IV.2.3).	Let	us	presume	that	\((P,\leq)\)	has	the	properties	required	to	ensure	that	\(M[G]	\vDash	\varphi\),	where	\(\varphi\)	is	a	sentence	in	the	language	of	set	theory;	for	example,	\(\varphi\)	could	be	not	CH.	Hence,	\(M[G]	\vDash\)	ZFC	\(+~\varphi\).	Thus,if	\(M\)	is	a
countable	transitive	set	model	of	ZFC,	then	ZFC	\(+~\varphi\)	is	consistent.	To	conclude	that	ZFC	\(+~\varphi\)	is	consistent,	it	appears	that	one	must	first	show	that	there	exists	a	countable	transitive	set	model	of	ZFC.	However,	by	Gdels	second	incompleteness	theorem,	one	cannot	prove,	in	ZFC,	that	such	a	set	model	exists	(unless	ZFC	is
inconsistent).	Is	there	a	way	around	this	difficulty?	Note	that	there	are	finitely	many	axioms	in	ZFC	such	that	if	just	these	axioms	hold	in	\(M\),	then	one	can	still	prove	that	\(M[G]	\vDash	\varphi\)	(Kunen	2011).We	now	discuss	how	the	above	argument	used	to	establish	(6)	can	be	modified	to	correctly	conclude	that	ZFC	\(+~\varphi\)	is	consistent.	Let	\
(T\)	be	a	finite	set	of	axioms	in	ZFC.	Using	the	reflection	principle,	one	can	prove,	in	ZFC,	thatthere	is	a	countable	transitive	set	model	\(M\)	in	which	the	axioms	in	\(T\)	are	true.	For	any	finite	set	\(S\)	of	axioms	in	ZFC,	the	forcing	method	shows	that	there	is	a	finite	set	\(T\)	of	axioms	in	ZFC	such	that	\(S	\subseteq	T\)	andif	\(M\)	is	a	countable
transitive	set	model	in	which	the	axioms	in	\(T\)	hold,	then	there	is	a	generic	extension	\(M[G]\)	in	which	\(\varphi\)	and	the	axioms	in	\(S\)	hold.	Since	\(T\)	is	a	finite	set	of	axioms,	we	conclude	from	(7)	that	there	is	a	countable	transitive	set	model	\(M\)	that	satisfies	all	of	the	axioms	in	\(T\).	Therefore,	by	(8),	there	is	a	generic	extension	\(M[G]\)	that
satisfies	\(\varphi\)	and	all	of	the	axioms	in	\(S\).	Since	proofs	are	finite,	we	conclude	that,	in	ZFC,	one	cannot	prove	\(eg	\varphi\).	Hence,	ZFC	\(+~\varphi\)	is	consistent,	assuming	that	ZFC	is	consistent.Cohens	forcing	technique	is	very	versatile	and	has	been	used	to	show	that	there	are	many	statements,	both	in	set	theory	and	in	mathematics,	that
are	undecidable	(or	unprovable)	in	ZF	and	ZFC.	For	example,	in	mathematics,	the	HahnBanach	theorem	is	a	crucial	tool	used	in	functional	analysis.	The	proof	of	this	theorem	uses	the	axiom	of	choice.	The	forcing	method	has	been	used	to	show	that	HahnBanach	theorem	is	not	provable	in	ZF	alone	(Jech	1974).	Moreover,	using	forcing	results	and	the
universe	of	constructible	sets,	Saharon	Shelah	(1974)	has	shown	that	a	famous	open	problem	in	abelian	group	theory	(Whiteheads	Problem)	is	undecidable	in	ZFC.As	suggested	earlier,	since	essentially	all	mathematical	concepts	can	be	formalized	in	the	language	of	set	theory,	set	theory	offers	a	unifying	theory	for	mathematics.	Thus,	the	theorems	of
mathematics	can	be	viewed	as	assertions	about	sets.	Moreover,	these	theorems	can	also	be	proven	from	ZFC,	the	Zermelo-Fraenkel	axioms	together	with	the	axiom	of	choice.	Cohens	forcing	method	clearly	shows	that	ZFC	is	an	incomplete	theory,	as	there	are	statements	that	cannot	be	resolved	in	it.	This	motivates	the	following	question:What	path
should	be	taken	to	try	to	settle	the	Continuum	Hypothesis	and	other	undecided	statements	in	mathematics?In	contemporary	set	theory,	the	most	common	answer	to	this	question	is	called	Gdels	Program:Search	for	new	axioms,	which,	when	added	to	ZFC,	will	determine	the	truth	or	falsity	of	unresolved	statements.This	program	was	inspired	by	an
article	of	Gdels	in	which	he	discusses	the	mathematical	and	philosophical	aspects	of	mathematical	statements	that	are	independent	of	ZFC	(Gdel	1947).	Sections	9	and	10	will	discuss	two	directions	that	this	program	has	taken:	large	cardinal	axioms	and	determinacy	axioms.9.	Large	Cardinal	AxiomsRoughly,	a	large	cardinal	axiom	is	a	set-theoretic
statement	that	asserts	the	existence	of	an	uncountable	cardinal	\(\kappa\)	that	satisfies	a	particular	property	that	implies	that	there	is	a	set	\(M\)	such	that	\((M,\in)\)	is	a	model	of	ZFC;	such	a	\(\kappa\)	is	called	a	large	cardinal.	Gdels	second	incompleteness	theorem	implies	that,	in	ZFC,	one	cannot	prove	the	existence	of	large	cardinals.	Thus,	a	large
cardinal	axiom	is	a	new	axiom.	Most	modern	set	theorists	believe	that	the	standard	large	cardinal	axioms	are	consistent	with	ZFC.Assuming	ZFC,	let	us	say	that	a	cardinal	\(\kappa\)	is	a	strong	limit	cardinal	if	and	only	if,	for	every	cardinal	\(\lambda\),	if	\(\lambda\)	<	\(\kappa\),	then	\(2^{\lambda}\)	<	\(\kappa\).	A	cardinal	\(\kappa\)	is	said	to	be
inaccessible	if	and	only	if	\(\kappa\)	is	uncountable,	regular,	and	a	strong	limit	cardinal.	Recall	that	a	cardinal	\(\kappa\)	is	regular	if	\(\kappa\)	is	not	the	union	of	fewer	than	\(\kappa\)	many	sets	of	size	each	less	than	\(\kappa\).	If	\(\kappa\)	is	an	inaccessible	cardinal,	then,	in	ZFC,	one	can	prove	that	\((V_{\kappa},\in)\)	is	a	model	of	ZFC	(Kanamori
2003).	Hence,	such	a	\(\kappa\)	is	an	example	of	a	large	cardinal	and	so,	the	statement	there	exists	an	inaccessible	cardinal	is	a	large	cardinal	axiom.There	are	other	large	cardinal	axioms.	The	description	of	these	large	cardinal	axioms	usually	involves	the	concept	of	an	elementary	embedding	of	the	universe,	that	is,	a	nontrivial	truth	preserving
transformation	from	\((V,\in)\)	into	\((M,\in)\)	where	\(M\)	is	a	transitive	subclass	of	\(V\).	A	theorem	of	Kenneth	Kunen	(Jech	2003)	shows	that	there	is	no	nontrivial	elementary	embedding	of	the	universe	\(V\)	into	itself.	Thus,	for	any	nontrivial	truth	preserving	transformation	from	\((V,\in)\)	into	\((M,\in)\)	where	\(M\)	is	a	transitive	subclass	of	\(V\),	\(M
eq	V\).	More	specifically,	a	large	cardinal	axiom	can	be	expressed	as	asserting	that	there	exists	a	nontrivial	(class)	function	such	that	for	each	formula	\(\varphi(v_{1},v_{2},\ldots,v_{n})\)	(in	the	language	of	set	theory)	and	for	all	elements	\(x_{1},\ldots,x_{n}\)	in	\(V\),\((V,\in)	\vDash	\varphi(x_{1},\ldots,x_{n})\)	if	and	only	if	\((M,\in)	\vDash
\varphi(j(x_{1}),\ldots,j(x_{n}))\).Since	the	embedding	\(j\)	is	not	the	identity,	there	must	be	a	least	ordinal	\(\kappa\)	such	that	\(\kappa\)	<	\(j(\kappa)\).	This	ordinal	is	called	the	critical	point	of	\(j\)	and	is	denoted	by	\(\kappa\)	=	crit\((j)\).	It	follows	that	\(\kappa\)	is	a	cardinal;	indeed,	\(\kappa\)	is	the	large	cardinal	that	is	confirmed	by	the	existence	of
the	embedding	\(j\).A	cardinal	\(\kappa\)	is	said	to	be	measurable	if	and	only	if	there	exists	an	embedding	\(j:	V	\rightarrow	M\)	such	that	\(\kappa\)	is	the	critical	point	of	\(j\).	In	this	case,	one	can	prove	that	\(V_{\kappa+1}	\subseteq	M\).	Therefore,	there	is	some	resemblance	between	\(M\)	and	\(V\).	Increasingly	stronger	large	cardinal	axioms	demand
a	greater	agreement	between	\(M\)	and	\(V\).	For	example,	if	one	requires	that	\(V_{\kappa+2}	\subseteq	M\),	then	one	obtains	a	stronger	large	cardinal	axiom.	For	another	example,	a	cardinal	\(\kappa\)	is	said	to	be	superstrong	if	and	only	if	there	is	a	transitive	class	\(M\)	and	a	nontrivial	elementary	embedding	\(j:	V	\rightarrow	M\)	such	that	\
(\kappa\)	=	crit\((j)\)	and	\(V_{j(\kappa)}	\subseteq	M\).	Even	stronger	large	cardinal	axioms	are	obtained	by	requiring	greater	and	greater	resemblance	between	\(M\)	and	\(V\)	(Woodin	2011).Large	cardinal	axioms	are	statements	that	assert	the	existence	of	large	cardinals.	These	axioms	are	widely	viewed	as	being	very	promising	new	axioms	for	set
theory.	Large	cardinal	axioms	do	not	resolve	the	Continuum	Hypothesis	but	they	have	led	mathematicians	to	formulate	conditions	under	which	Cantors	hypothesis	is	false	(Woodin	2001,	p.	688).	As	already	mentioned,	one	cannot	prove,	in	ZFC,	that	large	cardinals	exist.	Yet,	there	is	very	strong	evidence	that	their	existence	cannot	be	refuted	in	ZFC
(Maddy	1988).10.	The	Axiom	of	DeterminacyDescriptive	set	theory	has	its	origins,	in	the	early	20th	century,	with	the	theory	of	real-valued	functions	and	sets	of	real	numbers	developed	by	Borel,	Baire,	and	Lebesgue.	These	analysts,	respectively,	introducedthe	hierarchy	of	Borel	sets	of	real	numbers,the	Baire	hierarchy	of	real-valued
functions,Lebesgue	measurable	sets	of	real	numbers.Descriptive	set	theory	extends	the	work	of	these	mathematicians	(Moschovakis	2009).	Recall	that	\(\omega	=	\{0,1,2,3,4,\ldots\}\)	is	the	set	of	natural	numbers.	Let	\(^{\omega}\omega\)	be	the	set	of	all	functions	from	\(\omega\)	to	\(\omega\).	The	set	\(^{\omega}\omega\)	is	denoted	by	\
(\mathbb{R}\)	and	is	called	Baire	Space.	\(\mathbb{R}\)	is	often	referred	to	the	set	of	reals;	and	if	\(x	\in	\mathbb{R}\),	then	\(x\)	is	called	a	real.	\(\mathbb{R}\)	is	regarded	as	a	topological	space	by	giving	it	the	product	topology,	using	the	discrete	topology	on	\(\omega\).	The	space	\(\mathbb{R}\)	is	homeomorphic	to	the	set	of	irrational	numbers
which	is	a	subspace	of	the	set	of	real	numbers	(Moschovakis	2009).Descriptive	set	theory	is	a	branch	of	set	theory	that	uses	set	theoretic	tools	to	investigate	the	structure	of	definable	sets	and	functions	over	\(\mathbb{R}\).	One	can	identify	the	level	of	complexity	of	such	definable	sets	of	reals	(Moschovakis	2009).	Thus,	there	is	a	natural	hierarchy	on
the	definable	subsets	of	\(\mathbb{R}\),	which,	in	increasing	order	of	complexity,	is	called	the	projective	hierarchy.As	a	result	of	Gdels	and	Cohens	work,	it	has	been	shown	that	many	questions	in	descriptive	set	theory	are	not	decidable	in	axiomatic	set	theory.	For	example,	in	1938,	Gdel	showed	that	in	\(L\),	the	universe	of	constructible	sets,	there	are
projective	sets	of	reals	that	are	not	Lebesgue	measurable.	In	1970,	using	the	method	of	forcing,	Robert	Solovay	showed	that	if	there	is	an	inaccessible	cardinal,	then	ZFC	is	consistent	with	the	statement	that	every	projective	set	is	Lebesgue	measurable.	Thus,	one	can	neither	prove	nor	disprove,	in	ZFC,	the	Lebesgue	measurability	of	projective	sets.
Hence,	in	ZFC,	the	theory	of	projective	sets	is	incomplete.	For	this	reason,	modern	descriptive	set	theory	focuses	on	new	axioms;	one	such	axiom	concerns	infinite	games.Gale	and	Stewart	(1953)	introduced	the	general	concept	of	an	infinite	game	of	perfect	information	and	began	the	study	of	these	games.	Other	mathematicians	then	pursued	this
subject	and	discovered	that	it	can	be	used	to	resolve	problems	in	descriptive	set	theory.We	now	turn	to	a	description	of	infinite	games	and	strategies.	For	each	\(A	\subseteq	\mathbb{R}\),	we	associate	a	two-person	infinite	game	on	\(\omega\)	with	payoff	\(A\),	denoted	by	\(G_{A}\),	where	players	I	and	II	alternately	choose	natural	numbers	\(a_{i}\)	in
the	order	given	in	the	diagram:After	completing	an	infinite	number	of	moves,	the	players	produce	the	real\(x	=\)	\(a_{0},a_{1},a_{2},\ldots\).Player	I	is	said	to	win	if	\(x	\in	A\),	otherwise	player	II	is	said	to	win.	As	each	player	is	aware	of	all	the	previous	moves	before	making	a	next	move,	the	game	is	called	a	game	of	perfect	information.	The	game	\
(G_{A}\)	is	said	to	be	determined	if	and	only	if	either	player	has	a	winning	strategy,	that	is,	a	function	that	ensures	the	player	will	win	the	game	regardless	of	how	the	other	player	makes	his	or	her	moves.	The	Axiom	of	Determinacy	(AD)	is	a	regularity	hypothesis	about	such	games	that	states:	For	all	\(A	\subseteq	\mathbb{R}\),	the	game	\(G_{A}\)	is
determined.In	the	theory	ZF+AD,	one	can	resolve	many	open	questions	about	the	sets	of	real	numbers.	For	example,	one	can	prove	Cantors	original	form	of	the	continuum	hypothesis:	Every	uncountable	set	of	real	numbers	has	the	same	cardinality	as	the	full	set	of	real	numbers.Moreover,	it	has	been	shown	that	the	axiom	of	choice	implies	that	AD	is
false;	that	is,	using	the	axiom	of	choice,	one	can	construct	a	set	of	reals	\(A\)	such	that	the	game	\(G_{A}\)	is	not	determined.	Thus,	the	axiom	of	determinacy	is	incompatible	with	the	axiom	of	choice.	However,	it	is	not	clear	that	one	can	establish,	without	the	axiom	of	choice,	the	existence	of	a	set	of	reals	\(A\)	such	that	the	game	\(G_{A}\)	is	not
determined	(Moschovakis	2009).	Moreover,	there	are	weaker	versions	of	AD	that	are	compatible	with	ZF	together	with	a	weaker	choice	principle	called	the	axiom	of	dependent	choices.Axiom	of	Dependent	Choices	(DC).	Let	\(R\)	be	a	relation	on	a	nonempty	set	\(A\).	Suppose	that	for	all	\(x	\in	A\)	there	is	a	\(y	\in	A\)	such	that	\(R(x,y)\).	Then	there
exists	a	function	\(f:	\omega	\rightarrow	A\)	such	that,	for	all	\(n	\in	\omega\),	\(R(f(n),f(n+1))\).Many	mathematicians	working	in	descriptive	set	theory	operate	within	the	background	theory	ZF+DC	and	the	following	determinacy	axiom:	For	every	projective	set	\(A\),	the	game	\(G_{A}\)	is	determined.	This	axiom	is	denoted	by	PD	(projective
determinacy).	Under	the	theory	ZF+DC+PD,	the	classic	open	questions	about	projective	sets	have	been	successfully	addressed	(Moschovakis	2009).	In	particular,	this	theory	implies	that	all	projective	sets	are	Lebesgue	measurable.Generalizing	the	construction	of	the	inner	model	\(L\),	one	can	construct	the	inner	model	\(L(\mathbb{R})\),	the	smallest
inner	model	that	contains	all	the	ordinals	and	all	the	reals.	The	set	\(\wp(\mathbb{R})	\cap	L(\mathbb{R})\)	can	be	viewed	as	a	natural	extension	of	the	projective	sets.	The	determinacy	hypothesis	denoted	by	AD\(^{L(\mathbb{R})}\),	asserts	that	AD	holds	in	\(L(\mathbb{R})\).	Since	the	inner	model	\(L(\mathbb{R})\)	contains	all	of	the	projective
sets,	the	assumption	AD\(^{L(\mathbb{R})}\)	implies	PD.There	are	very	deep	results	that	connect	determinacy	hypotheses	and	large	cardinal	axioms.	In	1988,	Martin	and	Steel,	working	in	ZFC,	identified	a	large	cardinal	axiom	that	implies	PD.	By	assuming	a	stronger	large	cardinal	axiom,	Woodin,	within	ZFC,	was	able	to	prove	that	AD\
(^{L(\mathbb{R})}\)	holds	and	so,	\(L(\mathbb{R})\)	satisfies	ZF+AD.	Moreover,	PD	and	AD\(^{L(\mathbb{R})}\),	individually,	imply	the	consistency	of	certain	large	cardinal	axioms	(Kanamori	2003).	Investigating	the	relationships	between	determinacy	hypotheses	and	large	cardinals	has	become	an	important	component	of	modern	set	theory.11.
Concluding	RemarksSet	Theory	is	a	rich	and	beautiful	branch	of	mathematics	whose	fundamental	concepts	permeate	all	branches	of	mathematics.	It	is	a	most	extraordinary	fact	that	all	standard	mathematical	objects	can	be	defined	as	sets.	For	example,	the	natural	numbers	and	the	real	numbers	can	be	constructed	within	set	theory.	In	addition,
algebraic	structures,	functional	spaces,	vector	spaces,	and	topological	spaces	can	be	viewed	as	sets	in	the	universe	of	sets	\(V\).	Consequently,	mathematical	theorems	can	be	regarded	as	statements	about	sets.	These	theorems	can	also	be	proven	from	ZFC,	the	axioms	of	set	theory.	Thus,	mathematics	can	be	embedded	into	set	theory.Since	all	of
conventional	mathematics	can	be	developed	within	set	theory,	one	can	view	certain	results	in	set	theory	as	being	part	of	metamathematics,	the	field	of	study	within	mathematics	that	uses	mathematical	tools	to	investigate	the	nature	and	power	of	mathematics.	For	example,	using	the	forcing	technique	and	inner	models,	it	has	been	shown	that	there



are	mathematical	statements	that	cannot	be	proven	or	disproven	in	ZFC.	Thus,	when	a	particular	mathematical	statement	is	unresolved,	set	theory	can	sometimes	show	that	there	is	neither	a	proof	nor	a	refutation	of	the	statement	in	ZFC.	As	noted	above,	this	situation	has	inspired	the	search	for	new	set	theoretic	axioms.Of	course,	the	fact	that	set
theory	offers	a	foundation	for	mathematics	indicates	that	set	theory	is	a	very	important	branch	of	mathematics.	However,	the	concepts	and	techniques	developed	within	set	theory	demonstrate	that,	in	itself,	set	theory	is	a	deep	and	exciting	branch	of	mathematics	with	significant	applications	to	other	areas	of	mathematics.	This	success	has	inspired
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subconjuntos	y	subconjuntos	propios.	Realizar	operaciones	entre	conjuntos	(	unin	,	interseccin	y	diferencia).Un	conjunto	es	una	coleccin	o	agrupacin	de	objetos	(llamados	elementos)	bien	definidos	y	diferenciados.Para	denotar	un	conjunto	debemos	tener	en	cuenta:Nombre:	Generalmente	se	usan	letras	maysculas	(A,	B,	...	)La	agrupacin	de	los
elementos	debe	estar	encerrados	entre	llavesCuando	se	relaciona	a	un	elemento	con	el	conjunto	al	cual	pertenece	se	utiliza	el	smbolo	,	caso	contrario	se	dice	que	no	pertenece	Es	el	nmero	de	elementos	diferentes	que	posee	un	conjunto.Se	denota	as	n(A),	se	lee	cardinal	del	conjunto	A.	Cualquier	figura	geomtrica	cerrada	(crculos,	rectngulos,	tringulos
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