
	

https://busorawage.zuwufag.com/737311040105924478763798956142263776245771?mapifogufinizisudazotedawavasokavelaselexozujigujopaxugudotirunub=nivojevepijadopisobitinojosuzejilelutizewekixabinenamesagabevulekuwuxeriwumasaxojudavufuzabudedewofarogagekovumunixidarafabinoroxejirofirogosofatigaligunakiwevigivapifofefoterudavelizavugofatenorekidazonitizera&utm_kwd=do+you+need+to+know+hammer+commands+for+satellite+exam&zojamarekeziwalumimawidagizuvuwuzukirusakadutozudogerebubibemijosixuwesino=xudufubugefibukirolupuxixexezebefusumovoxexadukusibasovuxaporagirevigiwidorurizijinovadowijetuxokipewaputelunotirojovodavupiwezafegugezedo

Do	you	need	to	know	hammer	commands	for	satellite	exam

For	Satellite	6.2	Hammer	is	a	command-line	tool	provided	with	Red	Hat	Satellite	6.	You	can	use	Hammer	to	configure	and	manage	a	Red	Hat	Satellite	Server	through	either	CLI	commands	or	automation	in	shell	scripts.	The	following	cheat	sheet	provides	a	condensed	overview	of	essential	Hammer	commands.	See	the	Hammer	CLI	Guide	for	more
information	on	Hammer.	General	information	--help	Display	hammer	commands	and	options,	append	after	a	subcommand	to	get	more	information	org	The	setting	is	organization-specific,	append	--organization	org_name,	or	set	default	organization	with:	hammer	defaults	add	--param-name	\	organization_id	--param-value	org_ID	(Satellite	6.2	only)	loc
The	setting	is	location-specific,	append	--location	loc_name,	or	set	default	loction	with:	hammer	defaults	add	--param-name	location_id	\	--param-value	loc_ID	(Satellite	6.2	only)	Organizations,	Locations,	and	Repositories	Subcommand	Description	and	Tasks	organization	Create	an	organization	hammer	organization	create	\	--name	org_name	List
organizationshammer	organization	list	location	See	the	options	for	organization	subscriptionorg	Upload	a	subscription	manifesthammer	subscription	upload	\	--file	path	repository-setorg	Enable	a	repositoryhammer	repository-set	enable	\	--product	"prod_name"	\	--basearch	"base_arch"	\	--releasever	"rel_v"	\	--name	"repo_name"	repositoryorg
Synchronize	a	repositoryhammer	repository	synchronize	\	--product	"prod_name"	\	--name	"repo_name"	Create	a	custom	repositoryhammer	repository	create	\	--product	"prod_name"	\	--content-type	cont_type	\	--publish-via-http	true	\	--url	"repo_url"	--name	"repo_name"	Upload	content	to	a	custom	repositoryhammer	repository	upload-content	\	--
product	"prod_name"	\	--id	"repo_id"	--path	"path_to_dir"	Content	life	cycle	Subcommand	Description	and	Tasks	lifecycle-environmentorg	Create	a	life	cycle	environmenthammer	lifecycle-environment	\	create	--name	env_name	\	--description	"env_desc"	\	--prior	prior_env_name	List	life	cycle	environmentshammer	lifecycle-environment	\	list	content-
vieworg	Create	a	content	viewhammer	content-view	create	\	--name	cv_n	\	--repository-ids	repo_ID1,...	\	--description	"cv_description"	Add	repositories	to	a	content	viewhammer	content-view	\	add-repository	\	--name	cv_n	\	--repository-id	repo_ID	Add	Puppet	modules	to	a	content	viewhammer	content-view	\	puppet-module	add	\	--content-view	cv_n	\	--
name	module_name	Publishing	a	content	viewhammer	content-view	publish	\	--id	cv_ID	Publishing	a	content	viewhammer	content-view	version	\	promote	--content-view	cv_n	\	--to-lifecycle-environment	\	env_name	Incremental	update	of	a	content	viewhammer	content-view	version	\	incremental-update	\	--content-view-version-id	\	cv_ID	--packages
pkg_n1,...	\	--environment-ids	env_ID1,...	Provisioning	environment	Subcommand	Description	and	Tasks	domain	Create	a	domainhammer	domain	create	\	--name	domain_name	subnetorgloc	Add	a	subnethammer	subnet	create	\	--name	subnet_name	\	--organization-ids	org_ID1,...	\	--location-ids	loc_ID1,...	\	--domain-ids	dom_ID1,...	\	--boot-mode
boot_mode	\	--network	network_address	\	--mask	netmask	--ipam	ipam	compute-resourceorgloc	Create	a	compute	resourcehammer	compute-resource	create	\	--name	cr_name	\	--organization-ids	org_ID1,...	--location-ids	loc_ID1,...	\	--provider	provider_name	medium	Add	an	installation	mediumhammer	medium	create	\	--name	med_name\	--path
path_to_medium	partition-table	Add	a	partition	tablehammer	partition-table	create	\	--name	tab_name\	--path	path_to_file	\	--os-family	os_family	template	Add	a	provisioning	templatehammer	template	create	\	--name	tmp_name\	--file	path_to_template	os	Add	an	operating	systemhammer	os	create	--name	os_name\	--version	version_num	Activation	Keys
Subcommand	Description	and	Tasks	activation-keyorg	Create	an	activation	keyhammer	activation-key	create	\	--name	ak_name	\	--content-view	cv_n	\	--lifecycle-environment	lc_name	Add	a	subscription	to	the	activation	keyhammer	activation-key	\	add-subscription	--id	ak_ID	\	--subscription-id	sub_ID	Users	and	Permissions	Subcommand	Description
and	Tasks	userorg	Create	a	userhammer	user	create	--login	user_name	\	--mail	user_mail	--auth-source-id	1	\	--organization-ids	org_ID1,org_ID2...	Add	a	role	to	a	userhammer	user	add-role	--id	user_id	\	--role	role_name	user-group	Create	a	user	grouphammer	user-group	create	\	--name	ug_name	Add	a	role	to	a	user	grouphammer	user-group	add-role	--
id	ug_id	\	--role	role_name	role	Create	a	rolehammer	role	create	--name	role_name	filter	Create	a	filter	and	add	it	to	a	rolehammer	filter	create	--name	role_name	\	--permission-ids	perm_ID1,perm_ID2...	Errata	Subcommand	Description	and	Tasks	erratum	List	erratahammer	erratum	list	Find	erratum	by	CVEhammer	erratum	list	--cve	CVE	Inspect
erratumhammer	erratum	info	--id	err_ID	host	List	errata	applicable	to	a	hosthammer	host	errata	list	\	--host	host_name	Apply	errata	to	a	hosthammer	host	errata	apply	\	--host	host_name	\	--errata-ids	err_ID1,err_ID2...	Docker	containers	Subcommand	Description	and	Tasks	docker	Create	a	containerhammer	docker	container	create	\	--name
container_name	\	--compute-resource-id	cr_ID	\	--repository-name	repo_name	\	--tag	tag	--command	command	Start	a	containerhammer	docker	container	start	\	--id	cont_ID	Hosts	Subcommand	Description	and	Tasks	hostgrouporgloc	Create	a	host	grouphammer	hostgroup	create	\	--name	"hg_name"	\	--environment	"env_name"	\	--architecture
"arch_name"	\	--domain	domain_name	\	--subnet	subnet_name	\	--puppet-proxy	proxy_name	\	--puppet-ca-proxy	ca-proxy_name	\	--operatingsystem	"os_name"	\	--partition-table	"table_name"	\	--medium	"medium_name"	\	--organization-ids	org_ID1...	\	--location-ids	loc_ID1...	Add	an	activation	key	to	a	host	grouphammer	hostgroup	set-parameter	\	--
hostgroup	"hg_name"	\	--name	"kt_activation_keys"	\	--value	key_name	hostorgloc	Create	a	host	(inheriting	parameters	from	a	host	group)hammer	host	create	\	--name	"host_name"	\	--hostgroup	"hg_name"	\	--interface="primary=true,	\	mac=mac_addr,	ip=ip_addr,	"	\	provision=true	\	--organization-id	org_ID	\	--location-id	loc_ID	\	--ask-root-password
yes	job-template	Add	a	job	template	for	remote	executionhammer	job-template	create	\	--file	"path"	--name	"template_name"	\	--provider-type	SSH	--job-category	\	"category_name"	job-invocation	Invoke	a	remote	jobhammer	job-invocation	create	\	--job-template	"template_name"	\	--inputs	key1="value",...	\	--search-query	"query"	Monitor	the	remote
jobhammer	job-invocation	output	\	--id	job_id	--host	host_name	Tasks	Subcommand	Description	and	Tasks	task	List	all	taskshammer	task	list	Monitor	progress	of	a	running	taskhammer	task	progress	--id	task_ID	For	Satellite	6.3	Hammer	is	a	command-line	tool	provided	with	Red	Hat	Satellite	6.	You	can	use	Hammer	to	configure	and	manage	a	Red	Hat
Satellite	Server	through	either	CLI	commands	or	automation	in	shell	scripts.	The	following	cheat	sheet	provides	a	condensed	overview	of	essential	Hammer	commands.	See	the	HomeProductsRed	Hat	Satellite6.2Hammer	CLI	GuideFormatMulti-pageSingle-pageView	full	doc	as	PDFAbstract	This	document	describes	how	to	use	the	Hammer	CLI	tool	to
configure	and	manage	Red	Hat	Satellite.	Hammer	is	a	powerful	command-line	tool	provided	with	Red	Hat	Satellite	6.	You	can	use	Hammer	to	configure	and	manage	a	Red	Hat	Satellite	Server	either	through	CLI	commands	or	automation	in	shell	scripts.	Hammer	also	provides	an	interactive	shell.	Hammer	compared	to	Satellite	web	UI	Compared	to
navigating	the	web	UI,	using	Hammer	can	result	in	much	faster	interaction	with	the	Satellite	Server,	as	common	shell	features	such	as	environment	variables	and	aliases	are	at	your	disposal.	You	can	also	incorporate	Hammer	commands	into	reusable	scripts	for	automating	tasks	of	various	complexity.	Output	from	Hammer	commands	can	be
redirected	to	other	tools,	which	allows	for	integration	with	your	existing	environment.	You	can	issue	Hammer	commands	directly	on	the	base	operating	system	running	Red	Hat	Satellite.	Access	to	Satellite	Server’s	base	operating	system	is	required	to	issue	Hammer	commands,	which	can	limit	the	number	of	potential	users	compared	to	the	web	UI.
Although	the	parity	between	Hammer	and	the	web	UI	is	almost	complete,	the	web	UI	has	development	priority	and	can	be	ahead	especially	for	newly	introduced	features.	Hammer	compared	to	Satellite	API	For	many	tasks,	both	Hammer	and	Satellite	API	are	equally	applicable.	Hammer	can	be	used	as	a	human	friendly	interface	to	Satellite	API,	for
example	to	test	responses	to	API	calls	before	applying	them	in	a	script	(use	the	-d	option	to	inspect	API	calls	issued	by	Hammer,	for	example	hammer	-d	organization	list).	Changes	in	the	API	are	automatically	reflected	in	Hammer,	while	scripts	using	the	API	directly	have	to	be	updated	manually.	In	the	background,	each	Hammer	command	first
establishes	a	binding	to	the	API,	then	sends	a	request.	This	can	have	performance	implications	when	executing	a	large	number	of	Hammer	commands	in	sequence.	In	contrast,	a	script	communicating	directly	with	the	API	establishes	the	binding	only	once.	See	the	Red	Hat	Satellite	API	Guide	for	more	information.	View	the	full	list	of	hammer	options
and	subcommands	by	executing:	$	hammer	--help	Use	--help	to	inspect	any	subcommand,	for	example:	$	hammer	organization	--help	You	can	search	the	help	output	using	grep,	or	redirect	it	to	a	text	viewer,	for	example:	$	hammer	|	less	By	default,	hammer	prompts	for	your	Satellite	credentials	each	time	you	issue	a	command.	You	can	specify	your
credentials	when	executing	a	command	as	follows:	$	hammer	-u	-p	As	an	alternative,	follow	these	steps	to	use	saved	credentials:	Create	the	file	~/.hammer/cli_config.yml	and	add	the	following	contents	to	the	file:	:foreman:	:host:	'	:username:	'username'	:password:	'password'	Replace	the	example	values	with	your	own	details.	Do	not	use	tabs	in	the
file,	always	use	indentation	by	spaces.	To	protect	your	password,	make	sure	the	file	is	readable	only	by	the	current	user:	$	chmod	600	~/.hammer/cli_config.yml	Save	and	close	the	file.	Now	when	you	start	hammer	it	will	use	the	credentials	in	the	~/.hammer/cli_config.yml	file.	Use	only	spaces	for	indentation	in	Hammer	configuration	files.	Do	not	use
tabs	for	indentation	in	Hammer	configuration	files.	Examples	in	this	guide	assume	saved	credentials.	It	is	possible	to	install	hammer	individually	on	a	server	where	there	is	no	Satellite	installed,	and	use	it	to	connect	the	server	to	a	remote	Satellite.	The	rhel-X-server-satellite-6.X-rpms	repository	is	required	to	install	the	package.	Users	desiring	to	use	a
workstation	to	connect	should	install	the	repository	manually,	see	the	Red	Hat	Satellite	Installation	Guide.	Install	hammer.	#	yum	install	tfm-rubygem-hammer_cli_katello	Edit	/etc/hammer/cli.modules.d/foreman.yml	to	point	to	the	desired	Satellite.	Many	hammer	commands	are	organization	specific.	You	can	set	a	default	organization,	as	well	as
location,	for	hammer	commands	so	that	you	do	not	have	to	specify	it	every	time	using	the	--organization-id	parameter.	To	do	so,	issue:	$	hammer	defaults	add	--param-name	organization_id	--param-value	Find	in	the	output	of	the	hammer	organization	list	command.	Similarly,	you	can	set	the	default	location	as	follows:	$	hammer	defaults	add	--param-
name	location_id	--param-value	To	view	the	currently	specified	default	settings,	issue	the	following	command:	$	hammer	defaults	list	Specifying	a	default	organization	is	useful	when	you	mostly	manage	a	single	organization,	as	it	makes	your	commands	shorter.	However,	when	switching	to	a	different	organization,	you	still	have	to	use	a	command-line
option	to	specify	it.	Examples	in	this	guide	do	not	assume	a	saved	default	organization,	instead	they	use	the	shell	variable	approach	described	in	Note.	The	default	location	for	global	hammer	configuration	is:	/etc/hammer/cli_config.yml	for	general	hammer	settings.	/etc/hammer/cli.modules.d/	for	CLI	module	configuration	files.	You	can	set	user
specific	directives	for	hammer	(in	~/.hammer/cli_config.yml)	as	well	as	for	CLI	modules	(in	respective	.yml	files	under	~/.hammer/cli.modules.d/).	To	see	the	order	in	which	configuration	files	are	loaded,	as	well	as	versions	of	loaded	modules,	issue:	$	hammer	-d	--version	Loading	configuration	for	many	CLI	modules	can	slow	down	the	execution	of
hammer	commands.	In	such	a	case,	consider	disabling	CLI	modules	that	are	not	regularly	used.	Apart	from	saving	credentials	as	described	in	Section	1.2,	“Authentication”,	you	can	set	several	other	options	in	the	~/.hammer/	configuration	directory.	For	example,	you	can	change	the	default	log	level	and	set	log	rotation	with	the	following	directives	in
~/.hammer/cli_config.yml.	Note	that	these	directives	affect	only	the	current	user	and	are	not	applied	globally.	:log_level:	'warning'	:log_size:	5	#in	MB	Similarly,	you	can	set	the	number	of	lines	displayed	at	once	in	the	hammer	output	(equivalent	of	the	--per-page	option):	:per-page:	30	You	can	set	hammer	to	log	debugging	information	for	various
Satellite	components.	You	can	set	debug	or	normal	configuration	options	for	all	Satellite	components.	After	changing	hammer’s	logging	behavior,	you	must	restart	Satellite	services.	#	katello-service	restart	To	set	debug	level	for	all	components,	use	the	following	command:	#	hammer	admin	logging	--all	--level-debug	#	katello-service	restart	To	set
production	level	logging,	use	the	following	command:	#	hammer	admin	logging	--all	--level-production	#	katello-service	restart	To	list	the	currently	recognized	components,	that	you	can	set	logging	for:	#	hammer	admin	logging	--list	To	list	all	the	available	options	of	this	tool:	#	hammer	admin	logging	--help	Usage:	hammer	admin	logging	[OPTIONS]
You	can	issue	hammer	commands	through	the	interactive	shell.	To	invoke	the	shell,	issue	the	following	command:	$	hammer	shell	In	the	shell,	you	can	enter	subcommands	directly	without	typing	"hammer",	which	can	be	useful	for	testing	commands	before	using	them	in	a	script.	To	exit	the	shell,	type	exit	or	press	[Ctrl	+	D].	You	can	modify	the
default	formatting	of	the	output	of	hammer	commands	to	simplify	the	processing	of	this	output	by	other	command	line	tools	and	applications.	For	example,	to	list	organizations	in	a	CSV	format	with	a	custom	separator	(in	this	case	a	semicolon),	issue	the	following	command:	$	hammer	--csv	--csv-separator	";"	organization	list	Output	in	CSV	format	is
useful	for	example	when	you	need	to	parse	IDs	and	use	them	in	a	for	loop	(see	Example	2.6,	“Synchronizing	All	Repositories	in	ACME	Organization”	or	Example	2.8,	“Assigning	a	Synchronization	Plan	to	Multiple	Products”).	Several	other	formatting	options	are	available	with	the	--output	option:	$	hammer	--output	organization	list	Replace	with	one	of:
table	—	generates	output	in	the	form	of	a	human	readable	table	(default).	base	—	generates	output	in	the	form	of	key-value	pairs.	yaml	—	generates	output	in	the	YAML	format.	csv	—	generates	output	in	the	Comma	Separated	Values	format.	To	define	a	custom	separator,	use	the	--csv	and	--csv-separator	options	instead.	json	—	generates	output	in	the
JavaScript	Object	Notation	format.	silent	—	suppresses	the	output.	You	can	use	the	hammer	ping	command	to	check	the	status	of	core	Satellite	services.	Together	with	the	katello-service	status	command,	this	can	help	you	to	diagnose	and	troubleshoot	Satellite	issues.	If	all	services	are	running	as	expected,	the	output	looks	as	follows:	$	hammer	ping
candlepin:	Status:	ok	Server	Response:	Duration:	22ms	candlepin_auth:	Status:	ok	Server	Response:	Duration:	17ms	pulp:	Status:	ok	Server	Response:	Duration:	41ms	pulp_auth:	Status:	ok	Server	Response:	Duration:	23ms	foreman_tasks:	Status:	ok	Server	Response:	Duration:	33ms	You	can	use	hammer	to	create,	edit,	and	manage	organizations,
locations,	and	repositories.	For	web	UI	equivalents	of	the	following	procedures	see	Configuring	Organizations,	Locations	and	Life	Cycle	Environments	in	the	Red	Hat	Satellite	Server	Administration	Guide.	Organization	in	Red	Hat	Satellite	is	an	isolated	collection	of	systems,	content,	and	other	functionality	within	a	Satellite	deployment.	This	section
shows	how	to	create	and	modify	organizations	using	hammer.	Use	the	following	command	to	create	an	organization:	$	hammer	organization	create	\	--name	""	\	--label	""	\	--description	""	Where:	is	the	name	of	the	organization.	This	parameter	is	required.	is	the	organization	label	used	in	command-line	applications	such	as	subscription-manager.	Labels
cannot	contain	white	space	and	you	cannot	change	them	later.	If	not	specified,	label	is	generated	automatically	from	the	organization	name	(white	space	is	replaced	with	underscores).	is	a	short	description	of	the	organization.	This	parameter	is	not	required,	but	it	can	help	you	to	manage	a	large	number	of	organizations.	You	can	fully	configure	an
organization	while	creating	it	(issue	hammer	organization	create	--help	to	see	the	options).	Also,	you	can	modify	an	existing	organization	using	the	hammer	organization	update	command.	Example	2.1.	Creating	and	Updating	ACME	Organization	The	following	example	shows	how	to	create	an	organization	named	ACME:	$	ORG="ACME"	$	hammer
organization	create	\	--name	$ORG	\	--description	"Example	organization"	This	command	assigns	a	compute	resource	to	the	organization:	$	hammer	organization	update	\	--name	$ORG	\	--compute-resource-ids	1	Many	tasks	you	can	perform	in	the	Satellite	Server	are	specific	to	an	organization.	Hammer	commands	provide	three	ways	to	identify	an
organization:	by	using	the	organization,	organization-label,	or	organization-id	option.	To	find	the	organization	ID,	use	the	following	command:	$	hammer	organization	list	If	your	organization	name	is	long,	consider	storing	it	in	a	shell	variable.	You	can	use	this	variable	in	Hammer	commands.	For	example:	$	ORG	=	"Red	Hat	Enterprise	Linux	Developer
Team"	$	hammer	product	list	--organization	$ORG	This	approach	is	used	in	examples	in	this	guide.	If	you	mostly	manage	a	single	organization,	store	its	ID	as	a	default	parameter,	for	example:	$	hammer	defaults	add	--param-name	organization_id	--param-value	1	With	the	above	setting,	organization	specific	commands	will	assume	--organization-id	1	is
specified,	so	you	no	longer	have	to	type	it.	A	Subscription	Manifest	transfers	subscriptions	from	the	Red	Hat	Customer	Portal	to	Satellite	Server.	First,	generate	the	manifest	on	the	Red	Hat	Customer	portal	as	described	in	the	Red	Hat	Satellite	Content	Management	Guide.	Then	upload	the	manifest	to	the	organization	as	follows:	$	hammer
subscription	upload	\	--organization-label	\	--file	Example	2.2.	Uploading	a	Manifest	to	ACME	Organization	The	following	example	shows	how	to	upload	a	Subscription	Manifest	file	to	the	ACME	organization	(assuming	the	organization	name	is	stored	in	a	shell	variable):	$	hammer	subscription	upload	--organization	$ORG	--file	/tmp/manifest.zip	To	view
the	subscriptions	imported	with	the	manifest,	issue:	$	hammer	subscription	list	--organization	$ORG	Location	in	Red	Hat	Satellite	is	collection	of	default	settings	that	represent	a	physical	place.	This	section	shows	how	to	create	locations	using	hammer.	Use	the	following	command	to	create	a	location:	$	hammer	location	create	--name
Example	2.3.	Creating	Multiple	Locations	Using	a	Script	The	following	Bash	script	creates	three	locations	(london,	munich,	boston),	and	assigns	them	to	the	ACME	organization.	ORG="ACME"	LOCATIONS="london	munich	boston"	for	LOC	in	${LOCATIONS}	do	hammer	location	create	--name	"${LOC}"	hammer	location	add-organization	--name
"${LOC}"	--organization	"${ORG}"	done	Run	hammer	location	--help	to	view	all	possible	location	related	operations.	Repository	provides	storage	for	a	collection	of	content.	This	section	shows	how	to	enable	and	synchronize	repositories	using	hammer.	Before	enabling	a	Red	Hat	repository,	you	need	to	know	its	name,	the	name	of	the	product	it
provides,	the	base	architecture,	and	the	release	version.	Use	the	following	command	to	enable	a	repository:	$	hammer	repository-set	enable	\	--organization-label	\	--product	""	\	--basearch	""	\	--releasever	""	\	--name	""Example	2.4.	Enabling	a	Red	Hat	Enterprise	Linux	Repository	The	following	command	enables	the	Red	Hat	Enterprise	Linux	7	Server
repository	for	the	organization:	$	hammer	repository-set	enable	\	--organization	$ORG	\	--product	"Red	Hat	Enterprise	Linux	Server"	\	--basearch	"x86_64"	\	--releasever	"7Server"	\	--name	"Red	Hat	Enterprise	Linux	7	Server	(RPMs)"	Run	hammer	repository-set	--help	to	view	all	possible	repository	related	operations.	Also	see	hammer	repository	--help.
By	synchronizing	a	repository	you	pull	its	content	from	Red	Hat	Customer	Portal	to	the	Satellite	Server.	To	synchronize	a	repository	you	need	to	specify	its	name	and	a	product	name:	$	hammer	repository	synchronize	\	--product	""	\	--name	""	\	--organization-label	\	--async	Note	that	if	you	have	created	Content	Views,	multiple	repositories	with	the
same	name	can	exist	within	a	single	organization.	In	such	a	case,	use	the	--id	option	to	identify	the	repository	you	want	to	synchronize	(issue	hammer	repository	list	to	find	repository	IDs).	Example	2.5.	Synchronizing	a	Red	Hat	Enterprise	Linux	Repository	The	following	command	performs	a	single	synchronization	of	the	Red	Hat	Enterprise	Linux	7
Server	repository	in	the	organization:	$	hammer	repository	synchronize	\	--product	"Red	Hat	Enterprise	Linux	Server"	\	--name	"Red	Hat	Enterprise	Linux	7	Server	(RPMs)"	\	--organization	$ORG	\	--async	The	task	ID	is	displayed	after	executing	the	above	command:	Repository	is	being	synchronized	in	task	640bb71f-0ce5-40a3-a675-425a4acacceb	To
view	the	progress	of	the	task,	issue:	$	hammer	task	progress	--id	640bb71f-0ce5-40a3-a675-425a4acacceb	After	finishing	the	first	synchronization,	the	repository	is	added	to	the	list	of	repositories	mirrored	on	Satellite	Server.	Execute	the	following	command	to	see	the	list:	$	hammer	repository	list	--organization	$ORG	You	can	also	synchronize	all
repositories	within	a	product	as	follows:	$	hammer	product	synchronize	\	--organization-label	\	--name	""	\	--async	With	the	--async	option,	the	repository	synchronization	runs	in	the	background,	which	for	example	allows	you	to	enable	and	synchronize	several	repositories	in	parallel.	Example	2.6.	Synchronizing	All	Repositories	in	ACME	Organization
The	following	Bash	script	synchronizes	all	repositories	within	the	ACME	organization.	ORG="ACME"	for	i	in	$(hammer	--csv	repository	list	--organization	$ORG	|	grep	-vi	'^ID'	|	awk	-F,	{'print	$1'})	do	hammer	repository	synchronize	--id	${i}	--organization	$ORG	--async	done	Product	in	Red	Hat	Satellite	is	a	collection	of	repositories	that	acts	as	the
smallest	unit	of	the	synchronization	process.	You	can	create	a	synchronization	plan	to	automatically	update	repositories	of	a	selected	product	in	a	given	time	interval.	To	define	a	synchronization	plan,	issue	the	following	command:	$	hammer	sync-plan	create	\	--name	""	\	--enabled=true	\	--interval	\	--organization-label	\	--sync-date	""	Replace	with
hourly,	daily,	or	weekly.	Replace	with	the	date	and	time	of	the	initial	synchronization	in	the	form	of	"YYYY-MM-DD	HH:MM:SS".	Example	2.7.	Creating	a	Synchronization	Plan	The	following	command	creates	a	daily	synchronization	schedule	for	the	ACME	organization,	that	runs	at	3	a.m.,	starting	from	15	January	2016:	$	hammer	sync-plan	create	\	--
name	"daily	sync	at	3	a.m."	\	--enabled=true	\	--interval	daily	\	--organization	$ORG	\	--sync-date	"2016-01-15	03:00:00"	To	associate	the	synchronization	plan	with	a	product,	issue	the	following	command:	$	hammer	product	set-sync-plan	\	--organization-label	\	--name	""	\	--sync-plan	""Example	2.8.	Assigning	a	Synchronization	Plan	to	Multiple	Products
The	following	Bash	script	selects	the	products	in	the	ACME	organization	that	have	been	synchronized	at	least	once	and	contain	at	least	one	repository	and	assigns	them	a	synchronization	plan	named	"daily	sync	at	3	a.m.".	ORG="ACME"	SYNC_PLAN="daily	sync	at	3	a.m."	for	i	in	$(hammer	--csv	product	list	--organization	$ORG	--per-page	999	|	grep	-
vi	'^ID'	|	grep	-vi	not_synced	|	awk	-F,	{'{	if	($5!=0)	print	$1}'})	do	hammer	product	set-sync-plan	--sync-plan	$SYNC_PLAN	--organization	$ORG	--id	$i	done	After	executing	the	script,	issue	the	following	command	to	see	which	products	have	been	assigned	the	synchronization	plan:	$	hammer	product	list	--organization	$ORG	--sync-plan	"daily	sync	at
3	a.m."	To	view	synchronization	plans	available	for	a	selected	organization,	issue	the	following	command:	$	hammer	sync-plan	list	--organization-label	For	more	details	on	working	with	products	and	synchronization	plans	see	the	output	of	hammer	sync-plan	--help	and	hammer	product	--help.	After	enabling	a	Red	Hat	repository,	the	corresponding
product	is	created	automatically.	To	enable	a	repository	with	custom	packages,	you	first	need	to	manually	create	a	product	for	this	repository.	Use	the	following	command	to	create	a	custom	product:	$	hammer	product	create	--name	""	--organization-label	The	following	command	creates	a	new	repository	under	the	custom	product:	$	hammer
repository	create	\	--name	""	\	--organization-label	\	--product	""	\	--content-type	--publish-via-http	true	\	--url	""	Replace	the	example	values	with	your	own	details,	in	particular:	specifies	the	type	of	content	in	the	repository,	choose	one	of	yum,	puppet,	or	docker.	specifies	the	URL	on	which	the	repository	will	be	available,	valid	only	if	`	--publish-via-http`
is	enabled.	To	upload	packages	to	a	custom	repository,	issue	the	following	command:	$	hammer	repository	upload-content	\	--product	""	\	--organization-label	\	--id	""	\	--path	Replace	with	the	path	to	the	directory	with	content	(RPM	packages,	Puppet	modules,	or	Docker	images)	to	be	added	to	the	custom	repository.	This	section	shows	how	to	use
hammer	to	create	Content	Views	and	to	promote	them	through	life	cycle	environments.	Life	cycle	environments	represent	stages	of	the	content	life	cycle.	This	section	shows	how	to	view	and	create	life	cycle	environments	with	hammer.	By	default,	the	Library	environment	is	present	for	each	organization.	Use	the	following	syntax	to	create	a	new	life
cycle	environment:	$	hammer	lifecycle-environment	create	\	--name	\	--description	""	\	--organization-label	\	--prior	Example	3.1.	Creating	a	Life	Cycle	Environment	This	example	shows	how	to	create	a	new	environment	based	on	Library	for	the	ACME	organization	(assuming	the	organization	name	is	stored	in	a	shell	variable):	$	hammer	lifecycle-
environment	create	\	--name	Development	\	--description	"Initial	testing"	\	--organization	$ORG	\	--prior	Library	You	can	create	another	life	cycle	environment	based	on	Development	using	the	--prior	option.	To	view	existing	life	cycle	environments,	issue	the	following	command:	$	hammer	lifecycle-environment	list	--organization-label	The	output	of	the
above	command	can	look	as	follows:	---|-------------|------------	ID	|	NAME	|	PRIOR	---|-------------|------------	2	|	Library	|	5	|	Development	|	Library	6	|	Testing	|	Development	---|-------------|------------	For	more	information	on	commands	related	to	life	cycle	environments,	see	the	output	of	hammer	lifecycle-environment	--help.	Content	Views	are	subsets	of	content	from
the	Library	created	by	intelligent	filtering.	You	can	publish	and	promote	Content	Views	into	life	cycle	environments	that	make	content	available	for	different	uses	(typically	Dev,	QA,	and	Production).	To	create	a	Content	View,	issue	the	following	command:	$	hammer	content-view	create	\	--name	\	--repository-ids	,,	\	--description	""	\	--organization-label
The	--repository-ids	option	adds	the	selected	repositories	to	the	Content	View,	use	the	hammer	repository	list	command	to	find	the	IDs.	It	is	also	possible	to	omit	this	option	to	create	an	empty	Content	View	that	you	can	modify	later	using	the	update	or	add-repository	subcommands.	Example	3.2.	Creating	a	Content	View	The	following	example	creates
a	Content	View	under	the	ACME	organization	and	assigns	it	three	repositories:	$	hammer	content-view	create	\	--name	cv-rhel7-server	\	--repository-ids	1,2,3	\	--description	"Initial	CV	for	RHEL	7"	\	--organization	$ORGExample	3.3.	Creating	a	Composite	Content	View	A	Composite	Content	View	is	comprised	of	one	or	more	Content	Views.	This	example
shows	how	to	create	a	Composite	Content	View	from	two	existing	Content	Views:	$	hammer	content-view	create	\	--name	ccv-rhel7-server-scl	\	--description	"CCV	for	RHEL7	and	Software	Collections"	\	--organization	$ORG	\	--composite	--component-ids	2,6	Find	the	IDs	for	the	--component-ids	option	by	executing	hammer	content-view	list.	There	are
three	content	types	you	can	add	to	the	Content	View:	RPM	packages,	Puppet	modules,	and	Docker	images.	Use	the	following	command	to	add	repositories	to	an	existing	Content	View:	$	hammer	content-view	update	\	--repository-ids	,...	\	--name	\	--organization-label	The	above	command	is	useful	for	populating	an	empty	Content	View	with	repositories.
Note	that	it	will	overwrite	any	existing	repositories,	therefore	to	increase	the	number	of	repositories	in	a	Content	View,	use:	$	hammer	content-view	add-repository	\	--organization-label	\	--name	\	--repository-id	Similarly,	you	can	use	the	remove-repository	subcommand	to	remove	a	repository	from	the	Content	View.	Use	hammer	content-view	info	to
inspect	repositories	in	a	Content	View.	Example	3.4.	Filtering	Packages	for	a	Content	View	–	Excluding	a	Package	Filters	allow	you	to	select	a	subset	of	packages	from	a	repository	(either	by	including	or	excluding)	to	create	customized	Content	Views.	This	example	shows	how	to	create	a	filter	to	exclude	the	emacs	package	from	the	cv-rhel7-server
Content	View.	First	create	a	filter	for	the	Content	View	in	the	organization:	$	hammer	content-view	filter	create	\	--type	rpm	\	--name	exclude-emacs	\	--description	"Excluding	emacs	package"	\	--inclusion	false	\	--organization	$ORG	\	--repository-ids	1,2,3	\	--content-view	cv-rhel7-server	Find	the	repository	IDs	by	executing	hammer	repository	list.
Create	a	rule	to	exclude	packages	with	name	starting	with	"emacs"	and	add	it	to	the	filter	as	follows:	$	hammer	content-view	filter	rule	create	\	--name	"emacs*"	\	--organization	$ORG	\	--content-view	cv-rhel7-server	\	--content-view-filter	exclude-emacs	As	a	result,	hosts	using	the	cv-rhel7-server	Content	View	will	not	have	access	to	the	emacs	package.
You	can	add	multiple	rules	to	a	filter,	see	the	output	hammer	content-view	rule	create	--help	for	the	full	list	of	filtering	parameters.	To	inspect	rules	present	in	a	filter,	issue	the	following	command:	$	hammer	content-view	filter	rule	list	\	--content-view	cv-rhel7-server	\	--content-view-filter	exclude-emacs	\	--organization	$ORGExample	3.5.	Filtering
Packages	for	a	Content	View	–	Limiting	Errata	by	Date	This	example	shows	how	to	create	a	filter	to	exclude	errata	released	before	a	specific	date	from	the	cv-rhel7-server	Content	View.	For	more	information	on	errata	management	see	Chapter	8,	Managing	Errata.	Create	a	filter	for	the	Content	View	as	follows:	$	hammer	content-view	filter	create	\	--
type	erratum	\	--name	limit-errata-by-date	\	--description	"Excluding	errata	by	date"	\	--inclusion	false	\	--organization	$ORG	\	--repository-ids	1,2,3	\	--content-view	cv-rhel7-server	Create	a	rule	to	exclude	errata	with	a	name	starting	with	"emacs"	and	add	it	to	the	filter	as	follows:	$	hammer	content-view	filter	rule	create	\	--end-date	\	--organization
$ORG	\	--content-view	cv-rhel7-server	\	--content-view-filter	limit-errata-by-date	\	--types	enhancement,bugfix,security	To	add	a	Puppet	module	to	a	Content	View,	first	upload	this	module	to	a	Puppet	repository	within	a	custom	product.	Use	the	commands	from	Section	2.3.4,	“Creating	a	Custom	Repository”	to	create	a	product	with	a	repository,	and	to
upload	a	Puppet	module	to	the	repository.	To	add	a	Puppet	module	to	a	Content	View,	issue	the	following	command:	$	hammer	content-view	puppet-module	add	\	--content-view	\	--name	Example	3.6.	Adding	a	Puppet	Module	to	a	Content	View	This	example	shows	how	to	add	a	Puppet	module	from	an	external	source	to	the	cv-rhel7-server	Content
View.	Download	the	concat	module	(that	constructs	files	from	multiple	text	fragments)	from	Puppet	Forge:	$	wget	-O	/tmp/puppetlabs-concat-1.2.5.tar.gz	/v3/files/puppetlabs-concat-1.2.3.tar.gz	Create	a	Puppet	repository	under	the	ACME-puppet	product	and	upload	the	module	to	this	repository	(the	example	assumes	repository	ID	is	6):	$	hammer
product	create	\	--name	"ACME-puppet"	\	--organization	ORG	hammer	repository	create	\	--organization	$ORG	\	--product	ACME-puppet	\	--name	"ACME	Puppet	Repository"	\	--content-type	puppet	\	--url	"	$	hammer	repository	upload-content	\	--organization	$ORG	\	--product	ACME-puppet	\	--id	6	\	--path	/tmp/puppetlabs-concat-1.2.5.tar.gz	Add	the
module	to	the	Content	View	using	the	id,	name,	or	author	parameters.	To	find	the	exact	values,	enter:	$	hammer	puppet-module	list	--organization	$ORG	---|--------|------------|--------	ID	|	NAME	|	AUTHOR	|	VERSION	---|--------|------------|--------	1	|	concat	|	puppetlabs	|	1.2.3	---|--------|------------|--------	To	add	the	module	to	the	Content	View,	issue:	$	hammer
content-view	puppet-module	add	\	--name	concat	\	--content-view	cv-rhel7-server	\	--organization	$ORG	To	verify	if	the	module	has	been	added	successfully,	issue	the	following	command:	$	hammer	content-view	puppet-module	list	\	--content-view	cv-rhel7-server	\	--organization	$ORG	You	can	upload	Docker	images	directly	to	the	dedicated	repository
as	follows:	$	hammer	repository	upload-content	--path	--id	Replace	with	a	path	to	the	archive	containing	the	Docker	image.	Use	to	identify	the	repository	of	docker	content	type.	Then	you	can	add	this	repository	to	the	Content	View.	By	publishing	a	Content	View	you	make	it	visible	and	usable	by	hosts.	Use	the	following	command	to	publish	a	selected
Content	View:	$	hammer	content-view	publish	\	--id	\	--organization-label	\	--async	Find	the	of	the	Content	View	to	be	published	in	the	output	of	the	hammer	content-view	list	command.	Published	Content	Views	become	available	in	the	Library	environment.	To	verify	the	Content	View	status,	issue	the	following	command:	$	hammer	content-view	info	--
id	Promoting	is	the	act	of	moving	a	Content	View	from	one	life	cycle	environment	to	another.	To	do	so,	issue	the	following	command.	$	hammer	content-view	version	promote	\	--content-view	\	--organization-label	\	--to-lifecycle-environment	Here,	stands	for	the	name	of	target	life	cycle	environment.	Example	3.7.	Promoting	a	Content	View	Through	the
Life	Cycle	Environment	Path	The	following	Bash	script	promotes	the	selected	Content	View	from	Library	through	all	life	cycle	environments	in	the	ACME	organization:	ORG="ACME"	CV_ID=1	for	i	in	$(hammer	--csv	lifecycle-environment	list	--organization	$ORG	|	grep	-vi	'^ID'	|	awk	-F,	{'print	$1'}	|	sort	-n)	do	hammer	content-view	version	promote	--
organization	$ORG	--to-lifecycle-environment-id	$i	--id	$CV_ID	done	To	verify	if	the	Content	View	has	been	promoted	correctly,	issue	the	following	command:	$	hammer	content-view	version	info	--id	1	Incremental	updates	enable	modifying	a	published	Content	View	without	the	need	to	promote	a	new	Content	View	version	through	the	life	cycle
environment.	As	a	result	of	the	incremental	update,	a	new	minor	Content	View	version	is	created.	Incremental	updates	are	useful	for	fast	emergency	updates,	you	can	use	them	to	add	errata,	packages,	or	Puppet	modules.	To	create	an	incremental	update	adding	new	packages	to	a	Content	View,	issue:	$	hammer	content-view	version	incremental-
update	\	--content-view-version-id	\	--packages	,	\	--lifecycle-environment-ids	,	,...	Find	the	Content	View	version	ID	in	the	output	of	hammer	Content	View	version	list.	Instead	of	supplying	packages	with	the	--packages	option,	you	can	add	Puppet	modules	with	--puppet-modules,	or	errata	with	--errata-ids	(see	Example	3.8,	“Adding	Errata	to	a	Content
View	using	an	Incremental	Update”).	For	more	information	on	working	with	incremental	updates	issue	hammer	content-view	version	incremental-update	--help.	Example	3.8.	Adding	Errata	to	a	Content	View	using	an	Incremental	Update	This	example	shows	how	to	apply	an	erratum	to	a	host	(named	auth01.example.com)	by	creating	an	incremental
update	of	its	Content	View:	$	hammer	content-view	version	incremental-update	\	--content-view-version-id	4	\	--errata-ids	8c3801f6-12a7-4a62-83f4-addbb1f34ce6	\	--lifecycle-environments	Infrastructure	To	find	the	required	information	for	the	above	command,	perform	the	following	steps:	Find	the	Content	View	your	host	is	registered	to	as	well	as	its
life	cycle	environment	by	executing:	$	hammer	content-host	info	--name	auth01.example.com	--organization	$ORG	Then	find	the	current	version	of	the	Content	View	(assuming	Content	View	name	RHEL7_Infra):	$	hammer	content-view	info	--name	"RHEL7_Infra"	--organization	$ORG	Find	the	IDs	of	errata	you	want	to	apply	in	the	list	of	applicable
errata	in	Library:	$	hammer	erratum	list	--content-view	"RHEL7_Infra"	--organization	$ORG	$	hammer	host	errata	list	--host	auth01.example.com	Activation	keys	define	the	subscription	properties	of	a	host.	Using	an	activation	key	improves	the	speed	of	host	registration.	For	web	UI	equivalents	of	the	following	procedures	see	the	Red	Hat	Satellite
Host	Configuration	Guide.	There	are	three	possible	use	cases	for	activation	keys:	Activation	keys	are	only	used	when	hosts	are	registered.	If	changes	are	made	to	an	activation	key,	it	is	only	applicable	to	hosts	that	are	registered	with	the	amended	activation	key	in	the	future.	The	changes	are	not	made	to	existing	hosts.	To	create	an	activation	key,
issue	the	following	command:	$	hammer	activation-key	create	--name	\	--organization-label	\	--content-view	\	--lifecycle-environment	Note	that	the	Content	View	has	to	be	published.	To	see	the	full	list	of	operations	related	to	activation	keys,	use	the	hammer	activation-key	--help	command.	To	add	a	subscription	to	the	activation	key,	issue	the	following
command:	$	hammer	activation-key	add-subscription	\	--id	\	--subscription-id	To	find	the	activation	key	ID,	use	hammer	activation-key	list;	to	find	the	subscription	ID,	use	hammer	subscription	list.	Example	4.1.	Creating	an	Empty	Activation	Key	This	example	shows	how	to	create	an	activation	key	that	directs	the	associated	hosts	to	automatically	attach
a	best	fitting	subscription:	$	hammer	activation-key	create	\	--name	"automatically	attach	key"	\	--organization	$ORG	\	--content-view	cv-rhel7-server	\	--lifecycle-environment	Testing	As	a	result,	hosts	registered	in	the	cv-rhel7-server	Content	View	are	associated	with	this	activation	key.	You	can	assign	several	activation	keys	to	a	Content	View.	In	case
of	conflicting	settings,	the	values	from	the	last	specified	key	take	precedence.	You	can	specify	the	order	of	precedence	by	setting	a	host	group	parameter	as	follows:	$	hammer	hostgroup	set-parameter	\	--name	kt_activation_keys	\	--value	,	,...	\	--hostgroup	This	section	shows	how	to	configure	various	stages	of	your	provisioning	environment	using
hammer.	For	web	UI	equivalents	of	the	following	procedures	see	the	Red	Hat	Satellite	Host	Configuration	Guide.	Domains	in	Red	Hat	Satellite	represent	DNS	zones.	Satellite	has	the	ability	to	assign	domain	names	with	Red	Hat	Satellite	Capsule	Server	DNS.	This	provides	users	with	a	means	to	group	and	name	hosts	within	a	particular	domain	and
associate	them	with	parameters	and	Puppet	variables.	To	create	a	new	domain,	issue	the	following	command:	$	hammer	domain	create	--name	You	can	associate	the	newly	created	domain	to	organizations	and	locations	using	the	hammer	organization	add-domain	or	hammer	location	add-domain	commands.	To	view	the	status	of	a	domain,	issue	the
following	command:	$	hammer	domain	info	--name	Subnets	in	Red	Hat	Satellite	define	networks	specified	for	groups	of	systems.	Subnets	use	standard	IP-address	settings	to	define	the	network	and	use	the	Red	Hat	Satellite	Capsule	Server’s	DHCP	features	to	assign	IP	addresses	to	systems	within	the	subnet.	The	following	command	contains	the
minimal	set	of	options	required	for	subnet	creation:	$	hammer	subnet	create	\	--name	\	--organization-ids	,...	\	--location-ids	,...	\	--domain-ids	,...	\	--boot-mode	\	--network	\	--mask	\	--ipam	Here,	is	one	of	Static	or	DHCP,	is	one	of	DHCP,	Internal	DB,	or	None.	If	using	DHCP,	you	can	set	the	IP	range	with	the	--from	and	--to	options.	For	the	full	list	of
configurable	options,	see	the	output	of	the	hammer	subnet	create	--help	command.	Architecture	in	Satellite	represents	a	logical	grouping	of	hosts	and	operating	systems.	To	view	the	architectures,	issue	the	following	command:	$	hammer	architecture	list	Architectures	are	created	by	Satellite	automatically	when	hosts	are	registered	in	Puppet,
therefore	it	is	rarely	needed	to	create	them	manually	(even	though	hammer	provides	this	option).	Compute	resources	are	hardware	abstractions	from	virtualization	and	cloud	providers.	Satellite	uses	compute	resources	to	provision	virtual	machines	and	containers.	Run	the	following	command	to	create	a	compute	resource:	$	hammer	compute-
resource	create	\	--name	\	--organization-ids	,...	\	--location-ids	,...	\	--provider	Here,	is	one	of:	RHEV,	RHEL	OpenStack	Platform,	Libvirt,	Docker,	Rackspace,	Google,	EC2,	or	VMware.	Depending	on	the	provider	type,	other	options	such	as	--url,	or	--user	may	be	required.	See	the	output	of	the	hammer	compute-resource	create	--help	command	for
details.	Installation	media	(ISO	images)	provide	content	for	kickstart	trees	and	new	host	installations	in	Red	Hat	Satellite.	To	list	the	media,	issue	the	following	command:	$	hammer	medium	list	To	add	a	new	medium,	issue	the	following	command:	$	hammer	medium	create	--name	--path	You	can	make	the	medium	available	to	organizations	and
locations	directly	when	adding	it	(see	the	output	of	the	hammer	medium	create	--help	command),	or	later	by	using	the	hammer	organization	add-medium	or	hammer	location	add-medium	commands.	Partition	tables	define	the	partitions	and	file	system	layout	for	new	installations	when	provisioning	systems.	Red	Hat	Satellite	provides	default	partition
tables	associated	with	operating	system	families,	to	view	them,	issue	the	following	command:	$	hammer	partition-table	list	To	create	a	new	partition	table,	issue	the	following	command:	$	hammer	partition-table	create	\	--name	\	--file	\	--os-family	See	the	output	of	the	hammer	partition-table	--help	command	for	other	subcommands.	Provisioning
templates	provide	the	systematic	means	to	run	unattended	installations.	To	view	the	provisioning	templates	provided	by	Satellite,	issue	the	following	command:	$	hammer	template	list	To	add	a	new	template,	issue	the	following	command:	$	hammer	template	create	--name	--file	See	the	output	of	the	hammer	template	--help	command	for	other
subcommands.	Operating	systems	define	combinations	of	installation	methods	and	media	and	are	grouped	within	families.	As	a	default,	Red	Hat	Satellite	uses	a	Red	Hat	family.	Families	allow	Satellite	to	change	certain	behaviors	when	provisioning	hosts.	To	list	operating	systems,	issue	the	following	command:	$	hammer	os	list	To	create	a	new
operating	system,	issue	the	following	command:	$	hammer	os	create	--name	--major	Then	you	can	add	architectures,	partition	tables,	installation	media,	and	configuration	templates	to	the	operating	system.	See	the	output	of	the	hammer	os	--help	command	for	details.	Example	5.1.	Updating	Multiple	Operating	Systems	The	following	Bash	script
assigns	each	operating	system	a	partition	table	(Kickstart	default),	configuration	template	(Kickstart	default	PXELinux),	and	provisioning	template	(Satellite	Kickstart	Default).	PARTID=$(hammer	--csv	partition-table	list	|	grep	"Kickstart	default"	|	cut	-d,	-f1)	PXEID=$(hammer	--csv	template	list	--per-page=1000	|	grep	"Kickstart	default	PXELinux"	|
cut	-d,	-f1)	SATID=$(hammer	--csv	template	list	--per-page=1000	|	grep	"provision"	|	grep	"Satellite	Kickstart	Default"	|	cut	-d,	-f1)	for	i	in	$(hammer	--csv	os	list	|	grep	-vi	'^ID'	|	awk	-F,	{'print	$1'})	do	hammer	partition-table	add-operatingsystem	--id="${PARTID}"	--operatingsystem-id="${i}"	hammer	template	add-operatingsystem	--id="${PXEID}"	-
-operatingsystem-id="${i}"	hammer	os	set-default-template	--id="${i}"	--config-template-id="${PXEID}"	hammer	os	add-config-template	--id="${i}"	--config-template-id="${SATID}"	hammer	os	set-default-template	--id="${i}"	--config-template-id="${SATID}"	done	You	can	add	grep	commands	to	the	for	statement	to	further	specify	the	affected
operating	systems.	To	verify	if	the	assignment	was	performed	correctly,	use	the	hammer	os	info	command.	Parameters	define	the	behavior	of	Red	Hat	Satellite	during	provisioning.	There	are	several	types	of	parameters,	see	the	Red	Hat	Satellite	Host	Configuration	Guide	for	details.	Use	the	following	example	to	set	a	global	parameter:	$	hammer
global-parameter	set	--name	--value	Example	5.2.	Setting	a	Global	Parameter	to	Disable	the	Firewall	Run	the	following	command	to	set	the	firewall	global	option	to	disabled:	$	hammer	global-parameter	set	--name	firewall	--value	--disabled	To	verify	the	setting,	issue	the	following	command:	$	hammer	global-parameter	list	---------|-------------	NAME	|
VALUE	---------|-------------	firewall	|	--disabled	---------|-------------	Similarly,	you	can	use	hammer	to	set	other	parameter	types:	To	set	domain	parameters,	use:	$	hammer	domain	set-parameter	\	--name	\	--value	\	--domain	To	set	host	group	parameters,	use:	$	hammer	hostgroup	set-parameter	\	--name	\	--value	\	--hostgroup	To	set	host	parameters,	use:
$	hammer	host	set-parameter	\	--name	\	--value	\	--host	To	update	smart	class	parameters,	use:	$	hammer	sc-param	\	--name	\	--default-value	Host	refers	to	any	physical	or	virtual	system	Red	Hat	Satellite	manages.	This	section	shows	how	to	create	and	configure	hosts	and	host	groups	using	hammer.	For	web	UI	equivalents	of	the	following	procedures
see	the	Red	Hat	Satellite	Host	Configuration	Guide.	A	host	group	is	a	collection	of	hosts	or	host	groups.	It	is	recommended	to	create	host	groups	to	hold	shared	host	parameters.	Members	of	the	host	group	inherit	these	parameters,	therefore	you	do	not	have	to	set	them	individually	during	host	creation.	Note	that	you	can	nest	host	groups	in	a
hierarchical	manner.	The	following	command	demonstrates	a	basic	set	of	options	for	creating	a	host	group:	$	hammer	hostgroup	create	\	--name	""	\	--environment	""	\	--architecture	""	\	--domain	\	--subnet	\	--puppet-proxy	\	--puppet-ca-proxy	\	--operatingsystem	""	\	--partition-table	""	\	--medium	""	\	--organization-ids	,...	\	--location-ids	,...	See	hammer
hostgroup	create	--help	for	the	full	list	of	configurable	options.	There	are	two	settings	that	cannot	be	configured	during	host	group	creation:	An	activation	key	has	to	be	added	afterwards	using:	$	hammer	hostgroup	set-parameter	\	--hostgroup	""	\	--name	"kt_activation_keys"	\	--value	Run	hammer	activation-key	list	to	find	the	activation	key	name	(see
Chapter	4,	Managing	Activation	Keys	for	details	on	activation	keys).	The	root	password	has	to	be	specified	when	adding	a	host	to	the	host	group.	Example	6.1.	Creating	Host	Groups	for	Multiple	Content	Views	The	following	Bash	script	creates	a	host	group	for	each	life	cycle	environment.	MAJOR="7"	OS=$(hammer	--output	csv	os	list	|	awk	-F	","
"/RedHat	${MAJOR}/	{print	\$2;exit}")	ARCH="x86_64"	ORG="ACME"	LOCATIONS="london,munich"	PTABLE_NAME="ptable-acme-os-rhel-server"	DOMAIN="example.com"	hammer	lifecycle-environment	list	--organization	"${ORG}"	|	awk	-F	"|"	'/[[:digit:]]/	{print	$2}'	|	sed	s'/	//'	|	while	read	LC_ENV	do	if	[[${LC_ENV}	==	"Library"]];	then
continue	fi	LC_ENV_LOWER=$(echo	${LC_ENV}	|	tr	'[[:upper:]'	'[[:lower:]]')	ParentID=$(hammer	--output	csv	hostgroup	list	--per-page	999	|	awk	-F","	"(\$3	~	/^${LC_ENV_LOWER}$/)	{print	\$1}")	hammer	hostgroup	create	--name	"rhel-${MAJOR}server-${ARCH}"	\	--medium
"${ORG}/Library/Red_Hat_Server/Red_Hat_Enterprise_Linux_${MAJOR}_Server_Kickstart_${ARCH}_${MAJOR}	Server"	\	--parent-id	${ParentID}	\	--architecture	"${ARCH}"	\	--operatingsystem	"${OS}"	\	--partition-table	"${PTABLE_NAME}"	\	--subnet	"${DOMAIN}"	\	--domain	"${DOMAIN}"	\	--organizations	"${ORG}"	\	--locations
"${LOCATIONS}"	\	--content-view	"cv-os-rhel-${MAJOR}Server"	\	--environment-id	$(hammer	--output	csv	environment	list	--per-page	999	|	awk	-F	","	"/KT_$	{ORG}_${LC_ENV}_cv_os_rhel_${MAJOR}Server/	{print	\$1}")	HgID=$(hammer	--output	csv	hostgroup	list	--per-page	999	|	awk	-F","	"(\$3	~	/^${LC_ENV_LOWER}\/rhel-${MAJOR}server-
${ARCH}$/)	{print	\$1}")	hammer	hostgroup	set-parameter	\	--hostgroup-id	"${HgID}"	\	--name	"kt_activation_keys"	\	--value	"act-${LC_ENV_LOWER}-os-rhel-${MAJOR}server-${ARCH}"	done	It	is	recommended	to	set	general	parameters	in	a	host	group	to	reduce	the	number	of	required	options	when	creating	a	host.	The	following	command	creates
a	basic	host	associated	to	a	host	group:	$	hammer	host	create	\	--name	""	\	--hostgroup	""	\	--interface="primary=true,	\	provision=true,	\	mac=,	\	ip="	\	--organization-id	\	--location-id	\	--ask-root-password	yes	After	executing	the	above	command	you	will	be	prompted	to	specify	the	root	password.	It	is	required	to	specify	the	host’s	IP	and	MAC	address,
other	properties	of	the	primary	network	interface	can	be	inherited	from	the	host	group	or	set	using	the	subnet,	and	domain	parameters.	You	can	set	additional	interfaces	using	the	--interface	option,	which	accepts	a	list	of	key-value	pairs.	For	the	list	of	available	interface	settings,	see	Table	6.1,	“Available	Keys	for	the	--interface	Option”.	If	you	decide
to	create	a	host	without	host	group	membership,	specify	additional	options	described	in	Section	6.1,	“Creating	a	Host	Group”.	There	is	a	wide	range	of	available	host	parameters,	for	details	see	the	output	of	hammer	host	create	--help.	The	value	of	certain	parameters	depends	on	the	type	of	compute	resource	the	host	is	provisioned	on,	see	Table	6.2,
“Host	Options	Specific	to	Provider”	for	reference.	Table	6.1.	Available	Keys	for	the	--interface	OptionKeysDescription	type	Defines	the	interface	type,	one	of	Nic::Managed,	Nic::BMC,	Nic::Bond.	name,	identifier	Identification	of	the	interface.	mac,	ip,	domain	(or	domain_id),	subnet	(or	subnet_id)	Network	settings,	domain	and	subnet	identification	can
be	inherited	from	the	host	group.	primary,	provision,	managed,	virtual	Accept	true	or	false.	Managed	hosts	needs	to	have	one	primary	and	provisioning	interface.	Specific	to	virtual	interfaces			tag	VLAN	tag,	this	attribute	has	precedence	over	the	subnet	VLAN	ID.	attached_to	Identifier	of	the	interface	to	which	the	virtual	interface	belongs,	for	example
eth1.	Specific	to	bonded	interfaces			mode	Bonding	mode,	one	of	balance-rr,	active-backup,	balance-xor,	broadcast,	802.3ad,	balance-tlb,	balance-alb.	Specific	to	BMC	interfaces			provider	BMC	provider,	set	to	IPMI.	username,	password	BMC	access	credentials.	Specific	to	hosts	provisioned	on	Libvirt			compute_type	Interface	type,	one	of	bridge,
network.	compute_network	or	compute_bridge	Specifies	interface	name,	pick	one	depending	on	the	interface	type.	compute_model	One	of	virtio,	rtl8139,	ne2k_pci,	pcnet,	e1000.	Specific	to	hosts	provisioned	on	RHEV			compute_name	Interface	name,	for	example	eth0.	compute_network	Select	one	of	the	available	networks	for	a	cluster,	use	UUID	from
RHEV.	Specific	to	hosts	provisioned	on	VMware			compute_type	Type	of	the	network	adapter,	depends	on	your	version	of	vSphere.	compute_network	Network	ID	form	VMware.	Table	6.2.	Host	Options	Specific	to	ProviderProviderKeys	Keys	for	the	--compute-attributes	option			EC2	flavor_id,	image_id,	availability_zone,	security_group_ids,	managed_ip
GCE	machine_type,	image_id,	network,	external_ip	Libvirt	cpus,	memory,	start	OpenStack	flavor_ref,	image_ref,	tenant_id,	security_groups,	network	RHEV	cluster,	template,	cores,	memory,	start	VMware	cpus,	corespersocket,	memory_mb,	cluster,	path,	guest_id,	scsi_controller_type,	hardware_version,	start	Keys	for	the	--volume	option			Libvirt
poll_name,	capacity,	format_type	RHEV	size_gb,	storage_domain,	bootable	VMware	datastore,	name,	size_gb,	thin,	eager_zero	Example	6.2.	Creating	a	Host	with	a	Bonded	Interface	Pair	The	following	example	shows	how	to	create	a	host	with	a	bonded	interface	pair.	For	more	information	on	interface	bonding	see	the	Red	Hat	Enterprise	Linux
Networking	Guide.	$	hammer	host	create	--name	bondtest	\	--hostgroup-id	1	\	--ip=192.168.100.123	\	--mac=52:54:00:14:92:2a	\	--subnet-id=1	\	--managed	true	\	--interface="identifier=eth1,	\	mac=52:54:00:62:43:06,	\	managed=true,	\	type=Nic::Managed,	\	domain_id=1,	\	subnet_id=1"	\	--interface="identifier=eth2,	\	mac=52:54:00:d3:87:8f,	\
managed=true,	\	type=Nic::Managed,	\	domain_id=1,	\	subnet_id=1"	\	--interface="identifier=bond0,	\	ip=172.25.18.123,	\	type=Nic::Bond,	\	mode=active-backup,	\	attached_devices=[eth1,eth2],	\	managed=true,	\	domain_id=1,	\	subnet_id=1"	\	--organization-id	1	\	--location-id	1	\	--ask-root-password	yes	A	host	collection	in	Red	Hat	Satellite	is	a
group	of	hosts.	The	following	command	shows	the	minimal	set	of	options	required	to	create	a	host	collection:	$	hammer	host-collection	create	\	--organization-label	\	--name	To	add	hosts	to	a	host	collection,	issue	the	following	command:	$	hammer	host-collection	add-host	\	--id	\	--host-ids	,...	Run	the	following	command	to	associate	a	host	collection
with	an	activation	key	(see	Chapter	4,	Managing	Activation	Keys	for	details	on	activation	keys):	$	hammer	activation-key	add-host-collection	\	--id	\	--host-collection	Hosts	grouped	in	the	host	collection	now	inherit	the	configuration	from	the	activation	key.	The	remote	execution	feature	enables	defining	arbitrary	commands	on	the	Satellite	Server	and
executing	them	on	remote	hosts.	Commands	are	defined	in	job	templates	that	are	similar	to	provisioning	templates.	Several	job	templates	are	included	by	default,	you	can	use	them	or	define	a	custom	template	for	example	to	manage	software	packages	or	start	a	Puppet	process	on	remote	hosts.	For	more	information	about	remote	execution	on
Satellite,	see	the	Running	Jobs	on	Satellite	Hosts	section	of	the	Host	Configuration	Guide.	To	use	this	feature	in	Hammer,	install	the	remote	execution	CLI	module	by	executing	the	following	command	as	root:	#	yum	install	tfm-rubygem-hammer_cli_foreman_remote_execution	To	list	job	templates	available,	issue:	$	hammer	job-template	list	To	create	a
job	template	using	a	template-definition	file,	use	a	command	as	follows:	$	hammer	job-template	create	\	--file	""	\	--name	""	\	--provider-type	SSH	\	--job-category	""	Replace	with	the	path	to	the	file	containing	the	template	definition.	Specify	a	custom	or	select	one	of	the	existing	categories	(Commands,	Katello,	Packages,	Power,	Puppet,	or	Services).	See
the	output	of	hammer	job-template	create	--help	for	information	on	other	available	parameters.	To	invoke	a	job	with	custom	parameters,	issue:	$	hammer	job-invocation	create	\	--job-template	""	\	--inputs	="",="",...	\	--search-query	""	Specify	the	template	name	you	want	to	use	for	the	remote	job.	Specify	inputs	as	a	comma	separated	list	of	key-value
pairs.	Run	hammer	job-template	info	to	see	what	parameters	are	required	by	your	template.	Replace	with	the	filter	expression	defining	which	hosts	will	be	affected	(for	example	"name	~	rex01").	Example	6.3.	Starting	the	httpd	Service	on	Selected	Hosts	This	example	shows	how	to	execute	a	remote	job	based	on	the	default	Service	Action	-	SSH
Default	template,	that	will	start	the	httpd	service	on	hosts	that	have	a	name	that	contains	"target".	$	hammer	job-invocation	create	\	--job-template	"Service	Action	-	SSH	Default"	\	--inputs	service="httpd",action="start"	\	--search-query	"name	~	target"	To	monitor	the	job	output,	issue:	$	hammer	job-invocation	output	\	--id	\	--host	Find	the	in	the
output	of	hammer	job-invocation	list.	For	more	information	on	executing	remote	commands	with	hammer,	issue	hammer	job-template	--help	or	hammer	job-invocation	--help.	For	the	administrator,	Red	Hat	Satellite	provides	the	ability	to	create,	modify,	and	remove	users.	Also,	it	is	possible	to	configure	access	permissions	through	assigning	roles	to
users.	This	section	shows	how	to	perform	these	tasks	using	hammer.	For	web	UI	equivalents	of	the	following	procedures	see	Users	and	Roles	in	the	Red	Hat	Satellite	Server	Administration	Guide.	User	in	Red	Hat	Satellite	defines	a	set	of	details	for	individuals	using	the	system.	To	configure	a	user	in	Red	Hat	Satellite,	hammer	provides	the	user	create
and	user	update	commands.	Create	a	new	user	with	the	following	command:	$	hammer	user	create	\	--login	\	--password	\	--mail	\	--auth-source-id	1	\	--organization-ids	,...	The	--auth-source-id	1	setting	means	that	the	user	is	authenticated	internally,	you	can	specify	an	external	authentication	source	as	an	alternative.	Add	the	--admin	option	to	grant
administrator	privileges	to	the	user.	Specifying	organization	IDs	is	not	required,	you	can	modify	the	user	details	later	using	the	update	subcommand.	For	more	information	on	user	related	subcommands	see	the	output	of	hammer	user	--help.	You	can	manage	permissions	of	several	users	at	once	by	organizing	them	into	user	groups.	User	groups
themselves	can	be	further	grouped	to	create	a	hierarchy	of	permissions.	Use	the	following	command	to	create	a	new	user	group:	$	hammer	user-group	create	--name	To	add	a	user	to	a	user	group,	issue	the	following	command:	$	hammer	user-group	add-user	--user	--id	Find	the	user	group	ID	by	executing	hammer	user-group	list.	Similarly,	you	can
add	user	groups	using	the	add-user-group	subcommand.	For	more	information	on	operations	related	to	user	groups	see	the	output	of	hammer	user-group	--help.	Roles	in	Red	Hat	Satellite	define	a	set	of	permissions	and	access	levels.	Satellite	provides	a	number	of	predefined	roles,	to	view	them,	enter	the	following	command:	$	hammer	role	list	To
view	permissions	associated	with	a	role,	issue	the	following	command:	$	hammer	role	filters	--id	Here,	is	the	ID	of	the	role	from	the	output	of	hammer	role	list.	To	create	a	custom	role,	issue	the	following	command:	$	hammer	role	create	--name	Add	a	permission	filter	to	the	role	with	the	following	command:	$	hammer	filter	create	\	--role	\	--
permission-ids	,...	Find	the	permissions	to	be	added	to	the	role	by	using	hammer	filter	available-permissions.	For	details	on	roles	and	permissions	see	the	output	of	hammer	role	--help	and	hammer	filter	--help.	Example	7.1.	Granular	Permission	Filtering	Red	Hat	Satellite	provides	the	ability	to	limit	the	configured	user	permissions	to	selected	instances

of	a	resource	type.	Use	the	--search	option	to	limit	permission	filters,	for	example:	$	hammer	filter	create	\	--permission-ids	91	\	--search	"name	~	ccv*"	\	--role	qa-user	The	above	command	adds	to	the	qa-user	role	a	permission	to	view,	create,	edit,	and	destroy	Content	Views	that	only	applies	to	Content	Views	with	name	starting	with	ccv.	See	Granular
Permission	Filtering	in	the	Satellite	Server	Administration	Guide	for	more	information.	To	assign	a	role	to	a	user,	issue	the	following	command:	$	hammer	user	add-role	--id	--role	Similarly,	you	can	assign	a	role	to	a	user	group:	$	hammer	user-group	add-role	--id	--role	Software	packages	in	Red	Hat	products	are	subject	to	updates,	referred	to	as
errata,	that	are	released	at	regular	intervals	as	well	as	asynchronously.	This	section	shows	how	to	inspect	and	apply	errata	using	hammer.	For	web	UI	equivalents	of	the	following	procedures	see	the	Red	Hat	Satellite	Host	Configuration	Guide.	To	view	errata	that	are	available	for	all	organizations,	issue	the	following	command:	$	hammer	erratum
listExample	8.1.	Filtering	Errata	The	hammer	erratum	list	command	provides	numerous	options	for	filtering	and	ordering	the	output	list.	For	example,	to	find	an	erratum	that	contains	a	specific	security	fix,	issue:	$	hammer	erratum	list	--cve	CVE-2014-0453	The	following	command	displays	applicable	errata	for	the	selected	product	that	contain	the
specified	bugs	ordered	so	that	the	security	errata	are	displayed	on	top:	$	hammer	erratum	list	\	--product-id	7	\	--search	"bug	=	1213000	or	bug	=	1207972"	\	--errata-restrict-applicable	1	\	--order	"type	desc"	For	more	information	on	syntax	used	in	the	--search	option,	refer	to	the	Red	Hat	Satellite	Host	Configuration	Guide.	For	more	information	on
filtering	options	implemented	in	hammer,	see	the	output	of	hammer	erratum	list	--help.	To	view	details	of	a	specific	erratum,	issue	the	following	command:	$	hammer	erratum	info	--id	Replace	with	a	unique	identifier	of	the	erratum	found	in	the	output	of	the	hammer	erratum	list	command.	You	can	identify	errata	also	by	name	and	repository	name,	see
the	output	of	hammer	erratum	info	--help	for	details.	To	list	errata	available	for	a	host,	issue	the	following	command:	$	hammer	host	errata	list	--host	To	apply	selected	errata	to	the	host,	issue	the	following	command:	$	hammer	host	errata	apply	\	--host	\	--errata-ids	,...Example	8.2.	Applying	All	Available	Errata	to	a	Host	The	following	Bash	script
applies	all	errata	available	to	a	host	(auth01.example.com):	HOST="auth01.example.com"	for	i	in	$(hammer	--csv	host	errata	list	--host	$HOST	|	grep	-vi	'^ID'	|	awk	-F,	{'print	$1'})	do	hammer	host	errata	apply	--host	$HOST	--errata-ids	$i	doneExample	8.3.	Applying	a	Security	Advisory	This	example	shows	how	to	apply	a	security	fix	to	hosts	using
hammer:	Find	the	erratum	that	contains	a	fix	for	a	selected	issue	(CVE-2015-3238):	$	hammer	erratum	list	--cve	CVE-2015-3238	-------|----------------|----------|------------------------------	ID	|	ERRATA	ID	|	TYPE	|	TITLE	-------|----------------|----------|------------------------------	f30e66	|	RHSA-2015:1640	|	security	|	Moderate:	pam	security	update	-------|----------------|----------|--------------
----------------	Verify	if	the	security	erratum	(RHSA-2015:1640)	is	applicable	for	your	host	(auth01.example.com):	$	hammer	host	errata	list	\	--host	auth01.example.com	\	--search	"RHSA-2015:1640"	Apply	the	erratum	to	the	host:	$	hammer	host	errata	apply	\	--host	auth01.example.com	\	--errata-ids	"RHSA-2015:1640"	You	can	use	the	following	Bash
script	to	apply	a	security	erratum	(for	example	RHSA-2015:1640)	to	all	hosts	where	it	is	applicable:	ORG="ACME"	RHSA="RHSA-2015:1640"	for	i	in	$(hammer	--csv	host	list	--organization	$ORG	|	grep	-vi	'^ID'	|	awk	-F,	{'print	$2'})	do	hammer	host	errata	apply	--host	$i	--errata-ids	$RHSA	done	To	see	if	errata	were	applied	successfully,	find	the
corresponding	task	in	the	output	of	the	following	command:	$	hammer	task	list	To	review	the	state	of	a	selected	task,	issue	the	following	command:	$	hammer	task	progress	--id	To	apply	selected	errata	to	a	Host	Collection,	enter	a	command	as	follows:	$	hammer	host-collection	erratum	install	\	--errata	",,..."	\	--name	"my-collection"	--organization
$ORG	This	command	is	available	in	Red	Hat	Satellite	6.2.8	or	later.	A	Docker	container	is	a	sandbox	for	isolating	applications.	The	container	image	stores	the	configuration	for	the	container.	This	section	shows	how	to	use	hammer	to	provision	Docker	containers.	For	web	UI	equivalents	of	the	following	procedures	see	the	Red	Hat	Satellite	Host
Configuration	Guide.	In	Red	Hat	Satellite,	you	can	deploy	containers	only	on	a	compute	resource	of	the	Docker	provider	type.	See	the	Satellite	Host	Configuration	Guide	for	instructions	on	how	to	prepare	a	container	host.	To	register	this	host	as	a	compute	resource,	issue	the	following	command:	$	hammer	compute-resource	create	--name	\	--
organization-ids	,...	\	--location-ids	,...	\	--url	\	--provider	docker	Use	the	following	syntax	to	provision	a	container	on	the	compute	resource:	$	hammer	docker	container	create	\	--name	\	--compute-resource-id	\	--repository-name	\	--tag	\	--command	Find	the	compute	resource	ID	in	the	output	of	hammer	compute-resource	list.	Replace	with	the	name	of
the	synchronized	repository	that	contains	your	docker	images.	This	can	be	a	custom	repository	pointing	to	Docker	Hub	or	your	internal	registry	(see	Section	2.3.4,	“Creating	a	Custom	Repository”),	or	the	official	Red	Hat	image	repository.	If	you	provision	from	a	Content	View,	replace	with	the	name	of	the	Content	View.	See	Section	3.2.3,	“Adding
Docker	Images	to	a	Content	View”	for	details	on	adding	images	to	a	Content	View.	By	starting	a	container	you	start	the	process	specified	with	the	--command	option	during	the	container	creation.	To	start	a	container,	issue	the	following	command:	$	hammer	docker	container	start	--id	For	the	full	list	of	container	related	options,	see	the	output	of	the
hammer	docker	container	--help	command.	FormatMulti-pageSingle-pageView	full	doc	as	PDFBack	to	top	0	ratings0%	found	this	document	useful	(0	votes)2K	viewsSaveSave	Hammer	Cheat	Sheet	-	Red	Hat	Customer	Portal	For	Later0%0%	found	this	document	useful,	undefined

